[1] Johnson F L. Optical maser characteristics of rare-earth ions in crystals [J]. Journal of Applied Physics, 1963, 34(4): 897-909. doi:  10.1063/1.1729557
[2] Sorokin E, Sorokina I T, Mandon J, et al. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+: ZnSe femtosecond laser [J]. Optics Express, 2007, 15(25): 16540-16545. doi:  10.1364/OE.15.016540
[3] Mairesse Y, de Bohan A , Frasinski L J, et al. Optimization of attosecond pulse generation [J]. Physical Review Letters, 2004, 93(16): 163901. doi:  10.1103/PhysRevLett.93.163901
[4] Zhang J, Mak K F, Pronin O. Kerr-lens mode-locked 2 μm thin-disk lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-11.
[5] Pinto J F, Esterowitz L, Rosenblatt G H. Continuous wave mod-elocked 2 μm Tm: YAG laser [J]. Optics Letters, 1992, 17(10): 731-732. doi:  10.1364/OL.17.000731
[6] Keller U, Miller D A B, Boyd G D, et al. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semi- conductor Fabry-Perot saturable absorber [J]. Optics Letter, 1992, 17(7): 505-507. doi:  10.1364/OL.17.000505
[7] Lagatsky A A, Han X, Serrano M D, et al. Femtosecond (191 fs) NaY(WO4)2 Tm, Ho- codoped laser at 2060 nm [J]. Optics Letters, 2010, 35(18): 3027-3029. doi:  10.1364/OL.35.003027
[8] Ma J, Xie G Q, Gao W L, et al. Diode pumped mode-locked femtosecond Tm: CLNGG disordered crystal laser [J]. Optics Letters, 2012, 37(8): 1376-1378. doi:  10.1364/OL.37.001376
[9] Zhou W, Xu X, Xu R, et al. Watt-level broadly wavelength tunable mode locked solid-state laser in the 2 μm water absorption region [J]. Photonics Research, 2017, 5(6): 583-587. doi:  10.1364/PRJ.5.000583
[10] Wang L, Chen W, Zhao Y, et al. Sub-50 fs pulse generation from a SESAM mode-locked Tm, Ho-codoped calcium aluminate laser [J]. Optics Letters, 2021, 46(11): 2642. doi:  10.1364/OL.426113
[11] Luan C, Yang K, Zhao J, et al. Diode-pumped mode locked Tm: LuAG laser at 2 μm based on GaSb SESAM [J]. Optics Letters, 2017, 42(4): 839-842. doi:  10.1364/OL.42.000839
[12] Zhang H L, Huang J Y, Zhou C, et al. 2 μm-band Tm: YAP Crystal semiconductor saturable absorption mirror CW mode-locked laser [J]. Infrared and Laser Engineering, 2018, 47(5): 0505003. (in Chinese) doi:  0505003
[13] Zhao Y, Wang Y, Zhang X, et al. 87 fs mode locked Tm, Ho: CaYAIO4 laser at 2043 nm [J]. Optics Letters, 2018, 43(4): 915-918. doi:  10.1364/OL.43.000915
[14] Wang Y, Zhao Y, Loiko P, et al. 52 fs SESAM mode hocked Tm, Ho: CALGO laser[C]//Advanced Solid State Lasers, 2019.
[15] Wang Y C, Zhao Y G, Pan Z B, et al. 73 fs SESAM mode-locked Tm, Ho: CNGG laser at 2061 nm[C]//Solid State Lasers Technology and Devices, 2020.
[16] Chen W, Mero M, Wang Y, et al. SESAM mode-locked Tm: LuYO3 ceramic laser generating 54-fs pulses at 2048 nm [J]. Applied Optics, 2020, 59(33): 10493. doi:  10.1364/AO.408650
[17] Feng T, Yang K, Zhao J, et al. 1.21 W passively mode-locked Tm: LuAG laser [J]. Optics Express, 2015, 23(9): 11819-11824. doi:  10.1364/OE.23.011819
[18] Tyazhev A, Soulard R, Godin T, et al. Passively mode locked diode pumped Tm3+: YLF laser emitting at 1.91 µm using a GaAs-based SESAM [J]. Laser Physics Letters, 2018, 15: 045807. doi:  10.1088/1612-202X/aaa9aa
[19] Gluth A, Wang Y, Petrov V, et al. GaSb based SESAM mode-locked Tm: YAG ceramic laser at 2 µm [J]. Optics Express, 2015, 23(2): 1361-1369. doi:  10.1364/OE.23.001361
[20] Wang Y, Lan R, Mateos X, et al. Thulium doped LuAG ceramics for passively mode locked lasers [J]. Optics Express, 2017, 25(6): 7084-7091. doi:  10.1364/OE.25.007084
[21] Soulard R, Tyazhev A, Doualan J, et al. 2.3 µm Tm3+: YLF mode locked laser [J]. Optics Letters, 2017, 42(18): 3534-3536. doi:  10.1364/OL.42.003534
[22] Wang Y, Xie G, Xu X, et al. SESAM mode locked Tm: CALGO laser at 2 µm [J]. Optieal Materials Express, 2016, 6(1): 131-136. doi:  10.1364/OME.6.000131
[23] Wang Y, Wei J, Loiko P, et al. Sub-10 optical-cycle passively mode-locked Tm: (Lu2/3Sc1/3)2O3 ceramic laser at 2 µm [J]. Optics Express, 2018, 26(8): 10299. doi:  10.1364/OE.26.010299
[24] Cho W B, Schmidt A, Yim J H, et al. Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber [J]. Optics Letters, 2009, 17(13): 11007-11012.
[25] Qu Z, Wang Y, Liu J, et al. Passively mode locked 2-μm Tm: YAP laser with a double-wall carbon nanotube absorber [J]. Chinese Physics B, 2012, 21(6): 064211. doi:  10.1088/1674-1056/21/6/064211
[26] Zhao Y G, Li W, Wang Y C, et al. SWCNT-SA mode-locked Tm: LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2 µm [J]. Optics Letters, 2020, 45(2): 459. doi:  10.1364/OL.380035
[27] Schmidt A, Rivier S, Steinmeyer G, et al. Passive mode locking of Yb: KLuW using a single walled carbon nanotube saturable absorber [J]. Optics Letters, 2008, 33(7): 729-731. doi:  10.1364/OL.33.000729
[28] Zhao Y G, Wang Y C, Chen W D, et al. 67 fs pulse generate-on from a mode-locked Tm, Ho: CLNGG laser at 2083 nm [J]. Optics Express, 2019, 27(3): 1922. doi:  10.1364/OE.27.001922
[29] Pan Z, Wang Y, Zhao Y, et al. Generation of 84-fs pulses from a mode-locked Tm: CNNGG disordered garnet crystal laser [J]. Photonics Research, 2018, 6(8): 800-804. doi:  10.1364/PRJ.6.000800
[30] Pan Z, Wang Y, Zhao Y, et al. Sub-80 fs mode locked Tm, Ho codoped disordered garnet crystal oscillator operating at 2081 nm [J]. Optics Letters, 2018, 43(20): 5154-5157. doi:  10.1364/OL.43.005154
[31] Wang Y, Zhao Y, Pan Z, et al. 78 fs SWCNT SA mode- locked Tm: CLNGG disordered garnet erystal laser at 2017 nm [J]. Optics Letters, 2018, 43(17): 4268-4271. doi:  10.1364/OL.43.004268
[32] Breusing M, Ropers C, Elsaesser T, et al. Ultrafast carrier dynamics in graphite [J]. Physical Review Letters, 2009, 102(8): 086809. doi:  10.1103/PhysRevLett.102.086809
[33] Liu J, Wang Y G, Qu Z S, et al. Graphene oxide absorber for 2 μm passive mode‐locking Tm: YAlO3 laser [J]. Laser Physics Letters, 2011, 9(1): 15-19.
[34] Sun R, Chen C, Ling W, et al. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber [J]. Acta Physica Sinica, 2019, 68(10): 104207. (in Chinese) doi:  10.7498/aps.68.20182224
[35] Wang Y, Chen W, Mero M, et al. Sub-100 fs Tm: MgWO4, laser at 2017 nm mode locked by a graphene saturable absorber [J]. Optics Letters, 2017, 16(42): 3076-3079.
[36] Wan H, Cai W, Wang F. et al. et al. High-quality monolayer graphene for bulk laser mode-locking near 2 µm [J]. Optical and Quantum Electronics, 2016, 48(11): 1-8.
[37] Ma J, Xie G Q, Zhang J, et al. Passively mode-locked Tm: YAG ceramic laser based on graphene [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 160-165. doi:  10.1109/JSTQE.2014.2351791
[38] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two dimensional MoS2, nanosheets [J]. ACS Nano, 2013, 7(10): 9260-9267. doi:  10.1021/nn403886t
[39] Xu B, Cheng Y J, Wang Y, et al. Passively Q-switched Nd: YAlO, nanosecond laser using MoS2 as saturable absorber [J]. Optics Express, 2014, 22(23): 28934-28940. doi:  10.1364/OE.22.028934
[40] Li L J, Zhou L, Li T X, et al. Passive mode- locking operation of a diode pumped Tm: YAG laser with a MoS2 saturable absorber [J]. Optics and Laser Technology, 2020, 124: 105986. doi:  10.1016/j.optlastec.2019.105986
[41] Zhang B, Lou F, Zhao R, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser [J]. Optics Letters, 2015, 40(16): 3691-3694. doi:  10.1364/OL.40.003691
[42] Su X, Wang Y, Zhang B, et al. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber [J]. Optics Letters, 2016, 41(9): 1945-1948. doi:  10.1364/OL.41.001945
[43] Predan F, Ohlmann J, Mrabet S, et al. Hall characterization of epitaxial GaSb and AlGaAsSb layers using p-n junctions on GaSb substrates [J]. Journal of Crystal Growth, 2018, 496(8): 36-42. doi:  10.1016/j.jcrysgro.2018.05.023
[44] Kumar R, Sahoo S, Joanni E, et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives [J]. Nano Research, 2019, 12(11): 2655-2694. doi:  10.1007/s12274-019-2467-8
[45] Kränkel C, Fujita E, Tokurakawa M. Kerr-lens mode-locked Tm3+: Sc2O3 single-crystal laser in-band pumped by an Er: Yb fiber mopa at 1611 nm [J]. Optics Letters, 2017, 42(16): 3185. doi:  10.1364/OL.42.003185
[46] Haus H A, Fujimoto J G, Ippen E P. Analytic theory of additive pulse and Kerr lens mode locking [J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2086-2096. doi:  10.1109/3.159519
[47] Huang D, Ulman M, Acioli L H, et al. Self-focusing-induced saturable loss for laser mode locking [J]. Optics Letters, 1992, 17(7): 511. doi:  10.1364/OL.17.000511
[48] Senatsky Y, Shirakawa A, Sato Y, et al. Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high‐power laser‐driver [J]. Laser Physics Letters, 2004, 1(10): 500-506. doi:  10.1002/lapl.200410108
[49] Canbaz F, Yorulmaz I, Sennaroglu A. Kerr-lens mode-locked 2.3-μm Tm3+: YLF laser as a source of femtosecond pulses in the mid-infrared [J]. Optics Letters, 2017, 42(19): 3964. doi:  10.1364/OL.42.003964
[50] Wang L, Chen W D, Zhao Y G, et al. Single-walled carbon-nanotube saturable absorber assisted Kerr-lens mode-locked Tm: MgWO4 laser [J]. Optics Letters, 2020, 45(22): 6142-6145. doi:  10.1364/OL.411288
[51] Suzuki A, Kränkel C, Tokurakwa M. Sub-6 optical-cycle Kerr-lens mode-locked Tm: Lu2O3 and Tm: Sc2O3 combined gain media laser at 2.1 µm [J]. Optics Express, 2021, 29(13): 19465-19471. doi:  10.1364/OE.428063
[52] Zhao Y, Wang L, Chen W, et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser [J]. Optics Letters, 2021, 46(14): 3428-3431. doi:  10.1364/OL.431067
[53] Yang K, Heinecke D, Paajaste J, et al. Mode-locking of 2 μm Tm, Ho: YAG laser with GalnAs and GaSb-based SESAMs [J]. Optics Express, 2013, 21(4): 4311-4318. doi:  10.1364/OE.21.004311
[54] Yang K J, Heinecke D C, Kolbl C, et al. Mode locked Tm, Ho: YAP laser around 2.1 μm [J]. Optics Express, 2013, 21(2): 1574-1580. doi:  10.1364/OE.21.001574
[55] Yang K J, Bromberger H, Heinecke D, et al. Efficient continuous wave and passively mode-locked Tm-doped crystalline silicate laser [J]. Optics Express, 2012, 20(17): 18630-18635. doi:  10.1364/OE.20.018630
[56] Lagatsky A A, Calvez S, Cupta J A, et al. Boadly tunable femtosecond mode locking in a Tm: KYW laser near 2 μm [J]. Optics Express, 2011, 19(10): 9995-10000. doi:  10.1364/OE.19.009995
[57] Schmidt A, Sun Y C, Yeom D I, et al. Femtosecond pulses near 2 µm from a Tm: KLuW laser mode locked by a single walled carbon nanotube saturable absorber [J]. Applied Physics Express, 2012, 5(9): 2704.
[58] Ling W J, Xia T, Dong Z, et al. 1.91 μm Passively continuous-wave mode-locked Tm: LiLuF4 laser [J]. Optics & Laser Technology, 2018, 108: 364-367.
[59] Ling W J, Xia T, Dong Z, et al. Passively mode-locked Tm, Ho: LLF laser at 1895 nm [J]. Journal of Optics, 2019, 48(2): 209-213. doi:  10.1007/s12596-019-00528-y
[60] Cheng S J. Design and fluorescence properties of rare earth doped fluoride glass ceramics [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015: 1-3. (in Chinese)
[61] Nikov R, Nedyalkov N, Koleva M, et al. Femtosecond laser modification of the optical properties of glass containing noble-metal nanoparticles [J]. Journal of Physics Conference Series, 2020, 1492: 012058. doi:  10.1088/1742-6596/1492/1/012058
[62] Gan F X, Jiang Z H, Cai Y S. Research on Nd+ activated inorganic glass state acceptor laser emitter working material [J]. Science Bulletin, 1964, 1: 54-57. (in Chinese)
[63] Dai S X, Peng B, Wang X. 4.3-5 μm progress in the research of sulfur based glass materials with m medium infrared light emission [C]//National Special Glass Conference of Special Glass Branch of China Silicate Society, 2008. (in Chinese)
[64] Zhang Y, Xia L, Shen X, et al. Broadband mid-infrared emission in Dy3+/Er3+ co-doped tellurite glass [J]. Journal of Luminescence, 2021, 236(11): 118078.
[65] Fusari F, Lagatsky A A, Jose G, et al. Femtosecond mode-locked Tm3+and Tm3+-Ho3+ doped 2 μm glass lasers [J]. Optics Express, 2010, 18(21): 22090-22098. doi:  10.1364/OE.18.022090
[66] Hatch S E, Parsons W F, Weagley R J. Hot-pressed polycrystalline CaF2 Dy2+ laser [J]. Applied Physics Letters, 1964, 5(8): 153-154. doi:  10.1063/1.1754094
[67] Wang Y C, Lan R J, Mateos X, et al. Broadly tunable model-locked Ho: YAG ceramic laser around 2.1 μm [J]. Optics Express, 2016, 24(16): 18003-18012. doi:  10.1364/OE.24.018003
[68] Lagatsky A A, Antipov O L, Sibbett W. Boradly tunable femt-osecond Tm: Lu2O3 ceramic laser operating around 2070 nm [J]. Optics Express, 2012, 20(17): 19349-19354. doi:  10.1364/OE.20.019349
[69] Gaumé R , Viana B , Vivien D , et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals [J]. Laser Physics Letters, 2003, 87(3): 1355-1357. doi:  10.1063/1.1601676
[70] Lin A X, Ryasnyanskiy A, Toulouse J. Fabrication and character rization of awater-freemid-infrared fluoro tellurite glass [J]. Optics Letters, 2011, 36(5): 740-742. doi:  10.1364/OL.36.000740