[1] Lefsky M A, Cohen W B, Acker S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-Fir western hemlock forests [J]. Remote Sens Environ, 1999, 70: 339-361. doi:  10.1016/S0034-4257(99)00052-8
[2] Wulder M A, White J C, Stinson G, et al. Implications of differing input data sources and approaches upon forest carbon stock estimation [J]. Environmental Monitoring and Assessment, 2010, 166(1-4): 543-561. doi:  10.1007/s10661-009-1022-6
[3] Duncanson L I, Niemann K O, Wulder M A. Integration of GLAS and Landsat TM data for aboveground biomass estimation [J]. Canadian Journal of Remote Sensing, 2010, 36(2): 129-141. doi:  10.5589/m10-037
[4] Markus T, Neumann T, Martino A, et al. The ice, cloud, and land elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation [J]. Remote Sensing of Environment, 2017, 190: 260-273. doi:  10.1016/j.rse.2016.12.029
[5] Xie D, Li G, Zhao Y, et al. U. S. GEDl space-based laser altimetry system and its application [J]. Space International, 2018, 480(12): 41-46. (in Chinese
[6] Singh U N, Sugimoto N, Jayaraman A, et al. Lidar remote sensing for envirmonitoringXV-Overview and status of vegetation lidar mission MOLI[C]//Lidar Remote Sensing forEnvironmental Monitoring XV. Lidar Remote Sensing for Environmental Monitoring XV, 2016: 987908.
[7] Abshire J B, Smith J C, Schutz B E. The geoscience laser altimeter system (GLAS)[C]//AIP Conference Proceedings. AIP, 1998, 420(1): 33-37.
[8] Sun G, Ranson K J, Kimes D S, et al. Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data [J]. Remote Sensing of Environment, 2008, 112(1): 107-117. doi:  10.1016/j.rse.2006.09.036
[9] Lefsky M A, Harding D J, Keller M, et al. Estimates of forest canopy height and aboveground biomass using ICESat [J]. Geophysical Research Letters, 2005, 32(22): L22S02.
[10] Pang Y. Forest parameters inversion using spaceborne InSAR and Lidar technology[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2005.(in Chinese)
[11] Xing Y, Gier A D, Zhang J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China [J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(5): 385-392. doi:  10.1016/j.jag.2010.04.010
[12] Chi H, Huang J, Qiu J, et al. Estimation of forest above ground biomass using ICESat/GLAS data and Landsat/ETM+imagery [J]. Science of Surveying and Mapping, 2018, 43: 9-16. (in Chinese
[13] Hieu D, Norbert P, Roderik L. Full waveform analysis: ICESat laser data for land cover classification[C]//Proceedings of the ISRRS Mid-term Symposium, Remote Sensing: From Pixels to Processes, 2006: 8-11.
[14] Duong V H, Lindenbergh R, Pfeifer N, et al. Single and two epoch analysis of ICESat full waveform data over forested areas [J]. International Journal of Remote Sensing, 2008, 29(5): 1453-1473. doi:  10.1080/01431160701736372
[15] Zhang J, De Gier A, Xing Y, et al. Full waveform-based analysis for forest type information derivation from large footprint spaceborne lidar data [J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(3): 281-290.
[16] Wang R, Xing Y, You H, et al. Forest basal area estimation based on spaceborne LiDAR waveform Data [J]. Journal of Northwest Forestry University, 2014, 29(5): 156-162. (in Chinese
[17] Harding D J, Carabajal C C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure [J]. Geophysical Research Letters, 2005, 32(21): 741-746.
[18] Neuenschwander A L, Urban T J, Gutierrez R, et al. Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping [J]. Journal of Geophysical Research, 2008, 113: G02S03.
[19] Luo S, Wang C, Xi X, et al. Forest leaf area index estimationusing combined ICESat/GLAS and optical remote sensing image [J]. J Infrared Millim Waves, 2015, 34(2): 243-249. (in Chinese
[20] Stysley Paul R, Barry Coyle D, Kay Richard B, et al. Long term performance of the high output maximum efficiency resonator (HOMER) laser for NASA’s global ecosystem dynamics investigation (GEDI) lidar [J]. Optics & Laser Technology, 2015, 68: 67-72.
[21] Montesano P M, Rosette J, Sun G, et al. The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient [J]. Remote Sensing of Environment, 2015, 158: 95-109. doi:  10.1016/j.rse.2014.10.029
[22] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 Mission [J]. Remote Sensing of Environment, 2019, 221: 247-259. doi:  10.1016/j.rse.2018.11.005
[23] Zhang J, Kerekes J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(4): 726-730.
[24] Nie S. Study on the estimation method of forest canopy parameters using LiDAR data[D]. Beijing: University of Chinese Academy of Science(Institute of Remote Sensing and Digital Earth), 2017.(in Chinese)
[25] Huang J, Xing Y, You H, et al. Particle swarm optimization-based noise filtering algorithm for photon cloud data in forest area [J]. Remote Sensing, 2019, 11(8): 980. doi:  10.3390/rs11080980
[26] Nie S, Wang C, Xi X. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data [J]. Optics Express, 2018, 26: 520-540. doi:  10.1364/OE.26.00A520
[27] Popescu S C, Zhou T, Nelson R. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data [J]. Remote Sensing of Environment, 2018, 208: 154-170. doi:  10.1016/j.rse.2018.02.019