[1] Wei Q, Huang L, Zentgraf T, et al. Optical wavefront shaping based on functional metasurfaces [J]. Nanophotonics, 2020, 9: 987-1002. doi:  10.1515/nanoph-2019-0478
[2] Chen S, Liu W, Li Z, et al. Metasurface-empowered optical multiplexing and multifunction [J]. Advanced Materials, 2020, 32: 1805912. doi:  10.1002/adma.201805912
[3] Li Z, Yu S, Zheng G. Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more [J]. Nanophotonics, 2020, 9: 3699-3731.
[4] Hu Y, Wang X, Luo X, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications [J]. Nanophotonics, 2020, 9: 3755-3780.
[5] Jiang Q, Jin G, Cao L. When metasurface meets hologram: principle and advances [J]. Advances in Optics and Photonics, 2019, 11: 518-576. doi:  10.1364/AOP.11.000518
[6] Xiong B, Deng L, Peng R, et al. Controlling the degrees of freedom in metasurface designs for multi-functional optical devices [J]. Nanoscale Advances, 2019, 1: 3786-3806. doi:  10.1039/C9NA00343F
[7] Intaravanne Y, Chen X. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles [J]. Nanophotonics, 2020, 9: 1003-1014. doi:  10.1515/nanoph-2019-0479
[8] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[9] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352: 1190-1194. doi:  10.1126/science.aaf6644
[10] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses [J]. Light: Science & Applications, 2018, 7: 85.
[11] Wang S, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices [J]. Nature Communications, 2017, 8: 187. doi:  10.1038/s41467-017-00166-7
[12] Wang S, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13: 227-232. doi:  10.1038/s41565-017-0052-4
[13] Lin R J, Su V C, Wang S, et al. Achromatic metalens array for full-colour light-field imaging [J]. Nature Nanotechnology, 2019, 14: 227-231. doi:  10.1038/s41565-018-0347-0
[14] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology, 2018, 13: 220-226. doi:  10.1038/s41565-017-0034-6
[15] Arbabi A, Arbabi E, Horie Y, et al. Planar metasurface retroreflector [J]. Nature Photonics, 2017, 11: 415-420. doi:  10.1038/nphoton.2017.96
[16] Pahlevaninezhad H, Khorasaninejad M, Huang Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo [J]. Nature Photonics, 2018, 12: 540-547. doi:  10.1038/s41566-018-0224-2
[17] Andreas T, Aleksandrs L, Mingkai L, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces [J]. Science, 2018, 360: 1105-1109. doi:  10.1126/science.aas9768
[18] Yesilkoy M, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces [J]. Nature Photonics, 2019, 13: 390-396. doi:  10.1038/s41566-019-0394-6
[19] Yuan G H, Zheludev N I. Detecting nanometric displacements with optical ruler metrology [J]. Science, 2019, 364: 771-775. doi:  10.1126/science.aaw7840
[20] Zheng G, Liu G, Kenney M G, et al. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays [J]. Optics Express, 2016, 24: 6749. doi:  10.1364/OE.24.006749
[21] Shan X, Li Z, Deng L, et al. Continuous amplitude-modulated meta-fork gratings with zero-order extinction [J]. Optics Letters, 2020, 45: 1902. doi:  10.1364/OL.387665
[22] Dai Q, Li Z, Deng L, et al. Single-size nanostructured metasurface for dual-channel vortex beam generation[J]. Optics Letters, 2020, 45: 3773.
[23] Fu R, Li Z, Zheng G, et al. Reconfigurable step-zoom metalens without optical and mechanical compensations [J]. Optics Express, 2019, 27: 12221. doi:  10.1364/OE.27.012221
[24] Fu R, Deng L, Guan Z, et al. Zero-order-free meta-holograms in a broadband visible range[J]. Photonics Res, 2020, 8: 723.
[25] Song Q, Baroni A, Sawant R, et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces [J]. Nature Communications, 2020, 11: 2651. doi:  10.1038/s41467-020-16437-9
[26] Tan S J, Zhang L, Zhu D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures [J]. Nano Letters, 2014, 14: 4023-4029. doi:  10.1021/nl501460x
[27] Wang Y, Zheng M, Ruan Q, et al. Stepwise-nanocavity-assisted transmissive color filter array microprints [J]. Research, 2018, 2018: 8109054.
[28] Yang W, Xiao S, Song Q, et al. All-dielectric metasurface for high-performance structural color [J]. Nature Communications, 2020, 11: 1864. doi:  10.1038/s41467-020-15773-0
[29] Bao Y, Yu Y, Xu H, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding [J]. Advanced Functional Materials, 2018, 28: 1805306. doi:  10.1002/adfm.201805306
[30] Goh X M, Zheng Y, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour [J]. Nature Communications, 2014, 5: 5361. doi:  10.1038/ncomms6361
[31] Dai Q, Deng L, Deng J, et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces [J]. Optics Express, 2019, 27: 27927-27935. doi:  10.1364/OE.27.027927
[32] Deng J, Deng L, Guan Z, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures [J]. Nano Letters, 2020, 20: 1830-1838. doi:  10.1021/acs.nanolett.9b05053
[33] Yue F, Zhang C, Zang X F, et al. High-resolution grayscale image hidden in a laser beam [J]. Light: Science & Applications, 2018, 7: 17129.
[34] Zhang Y, Cheng Y, Chen M, et al. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface [J]. Applied Physics Letters, 2020, 117: 021105. doi:  10.1063/5.0014987
[35] Zang X, Dong F, Yue F, et al. Polarization encoded color image embedded in a dielectric metasurface [J]. Advanced Materials, 2018, 30: 1707499. doi:  10.1002/adma.201707499
[36] Li Z, Zheng G, He P, et al. All-silicon nanorod-based Dammann gratings [J]. Optics Letters, 2015, 40: 4285. doi:  10.1364/OL.40.004285
[37] Chen K, Deng J, Zhou N, et al. 2π-space uniform-backscattering metasurfaces enabled with geometric phase and magnetic resonance in visible light [J]. Optics Express, 2020, 28: 12331. doi:  10.1364/OE.389932
[38] Li Z, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light [J]. ACS Nano, 2017, 11: 9382-9389. doi:  10.1021/acsnano.7b04868
[39] Li Z, Dai Q, Mehmood M Q, et al. Full-space cloud of random points with a scrambling metasurface [J]. Light: Science & Applications, 2018, 7: 63.
[40] Deng J, Yang Y, Tao J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting [J]. ACS Nano, 2019, 13: 9237-9246. doi:  10.1021/acsnano.9b03738
[41] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10: 308-312. doi:  10.1038/nnano.2015.2
[42] Devlin R C, Khorasaninejad M, Chen W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum [J]. Proceedings of The National Academy of Sciences of The United States of America, 2016, 113: 10473-10478. doi:  10.1073/pnas.1611740113
[43] Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption [J]. Light: Science & Applications, 2018, 7: 95.
[44] Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation [J]. Science Advances, 2016, 2: e1601102. doi:  10.1126/sciadv.1601102
[45] Wan W, Gao J, Yang X. Full-color plasmonic metasurface holograms [J]. ACS Nano, 2016, 10: 10671-10680. doi:  10.1021/acsnano.6b05453
[46] Zhang X, Pu M, Guo Y, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces [J]. Advanced Functional Materials, 2019, 29: 1809145. doi:  10.1002/adfm.201809145
[47] Hu Y, Li L, Wang Y, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface [J]. Nano Letters, 2020, 20: 994-1002. doi:  10.1021/acs.nanolett.9b04107
[48] Huang K, Dong Z, Mei S, et al. Silicon multi-meta-holograms for the broadband visible light [J]. Laser & Photonics Reviews, 2016, 10: 500-509.
[49] Wei Q, Huang L, Li X, et al. Broadband multiplane holography based on plasmonic metasurface [J]. Advanced Optical Materials, 2017, 5: 1700434. doi:  10.1002/adom.201700434
[50] Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications, 2013, 4: 2808. doi:  10.1038/ncomms3808
[51] Deng Z L, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography [J]. Nano Letters, 2018, 18: 2885-2892. doi:  10.1021/acs.nanolett.8b00047
[52] Deng Z L, Deng J, Zhuang X, et al. Facile metagrating holograms with broadband and extreme angle tolerance [J]. Light: Science & Applications, 2018, 7: 78.
[53] Deng Z L, Jin M, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces [J]. Advanced Functional Materials, 2020, 30: 1910610. doi:  10.1002/adfm.201910610
[54] Bao Y, Ni J, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams [J]. Advanced Materials, 2020, 32: 1905659. doi:  10.1002/adma.201905659
[55] Zhang Y, Shi L, Hu D, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing [J]. Nanoscale Horizons, 2019, 4: 601-609. doi:  10.1039/C9NH00003H
[56] Zhang C, Dong F, Intaravanne Y, et al. Multichannel metasurfaces for anticounterfeiting [J]. Physical Review Applied, 2019, 12: 034028. doi:  10.1103/PhysRevApplied.12.034028
[57] Chen R, Zhou Y, Chen W, et al. Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display [J]. ACS Photonics, 2020, 7: 1171-1177. doi:  10.1021/acsphotonics.9b01795
[58] Li J, Chen Y, Hu Y. et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display [J]. ACS Nano, 2020, 14(7): 7892-7898.
[59] Hu Y, Luo X, Chen Y, et al. 3D-integrated metasurfaces for full-colour holography [J]. Light: Science & Applications, 2019, 8: 86.
[60] Lim K T P, Liu H, Liu Y. et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control [J]. Nature Communications, 2019, 10: 25. doi:  10.1038/s41467-018-07808-4
[61] Luo X, Hu Y, Li X, et al. Integrated Metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption [J]. Advanced Optical Materials, 2020, 8: 1902020. doi:  10.1002/adom.201902020
[62] Wen D, Cadusch J J, Meng J, et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images [J]. Advanced Functional Materials, 2020, 30: 1906415. doi:  10.1002/adfm.201906415
[63] Yoon G, Lee D, Nam K T, et al. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses [J]. ACS Nano, 2018, 12: 6421-6428. doi:  10.1021/acsnano.8b01344
[64] Wei Q, Sain B, Wang Y, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces [J]. Nano Letters, 2019, 19: 8964−8971.
[65] Zhang F, Pu M, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces [J]. Advanced Science, 2020, 7: 1903156. doi:  10.1002/advs.201903156
[66] Overvig A C, Shrestha S, Malek S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase [J]. Light: Science & Applications, 2019, 8: 92.
[67] Bao Y, Yu Y, Xu H, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation bright-ness control [J]. Light: Science & Applications, 2019, 8: 95.
[68] Deng L, Deng J, Guan Z, et al. Malus-metasurface-assisted polarization multiplexing [J]. Light: Science & Applications, 2020, 9: 101.
[69] Li Z, Chen C, Guan Z, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach [J]. Laser & Photonics Reviews, 2020, 14: 2000032.
[70] Deng J, Li Z, Zheng G, et al. Depth perception based 3D holograms enabled with polarization-independent metasurfaces [J]. Optics Express, 2018, 26: 11843-11849. doi:  10.1364/OE.26.011843
[71] Martins A, Li J, Mota A F D, et al. Broadband c-Si metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography [J]. Optics Express, 2018, 26: 30740-30752. doi:  10.1364/OE.26.030740
[72] Chen X, Chen M, Mehmood M Q, et al. Longitudinal multifoci metalens for circularly polarized light [J]. Advanced Optical Materials, 2015, 3: 1201-1206. doi:  10.1002/adom.201500110
[73] Mehmood M Q, Mei S, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices [J]. Advanced Materials, 2016, 28: 2533-2539. doi:  10.1002/adma.201504532
[74] Wen D, Yue F, Ardron M, et al. Multifunctional metasurface lens for imaging and Fourier transform [J]. Scientific Reports, 2016, 6: 27628. doi:  10.1038/srep27628
[75] Khorasaninejad M, Chen W T, Zhu A Y, et al. Visible wavelength planar metalenses based on titanium dioxide [J]. IEEE Journal of Quantum Electronics, 2017, 23: 43-58. doi:  10.1109/JSTQE.2016.2616447
[76] Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms [J]. Nature Communications, 2015, 6: 8241. doi:  10.1038/ncomms9241
[77] Huang K, Deng J, Leong H S, et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting [J]. Laser & Photonics Reviews, 2019, 13: 1800289.
[78] Wang B, Dong F, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms [J]. Nano Letters, 2016, 16: 5235-5240. doi:  10.1021/acs.nanolett.6b02326
[79] Li J, Kamin S, Zheng G, et al. Addressable metasurfaces for dynamic holography and optical information encryption [J]. Science Advances, 2018, 4: eaar6768. doi:  10.1126/sciadv.aar6768
[80] Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light [J]. Nature Communications, 2012, 3: 1198. doi:  10.1038/ncomms2207
[81] Zheng G, Wu W, Li Z, et al. Dual field-of-view step-zoom metalens [J]. Optics Letters, 2017, 42: 1261-1264. doi:  10.1364/OL.42.001261
[82] Cui Y, Zheng G, Chen M, et al. Reconfigurable continuous-zoom metalens in visible band [J]. Chinese Optics Letters, 2019, 17: 111603. doi:  10.3788/COL201917.111603
[83] Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter [J]. Nature Communications, 2014, 5: 5386. doi:  10.1038/ncomms6386
[84] Liu H C, Yang B, Guo Q, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram [J]. Science Advances, 2017, 3: e1701477. doi:  10.1126/sciadv.1701477
[85] Song X, Huang L, Tang C, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces [J]. Advanced Optical Materials, 2018, 6: 1701181. doi:  10.1002/adom.201701181
[86] Yang Z, Wang Z, Wang Y, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling [J]. Nature Communications, 2018, 9: 4607. doi:  10.1038/s41467-018-07056-6