[1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928.
[2] Yao Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(6):703-707. (in Chinese)
[3] Menikh A. Terahertz-biosensing Technology:Progress, Limitations, and Future Outlook[M]. Berlin:Springer, 2010:283-295.
[4] Chen T, Li S, Sun H. Metamaterials application in sensing[J]. Sensors (Basel), 2012, 12(3):2742-2765.
[5] Yan Xin, Zhang Xingfang, Liang Lanju, et al. Research progress in the application of biosensors by using metamaterial in terahertz wave[J]. Spectroscopy and Spectral Analysis, 2014, 34(9):2365-2372. (in Chinese)
[6] Nagel M, Richter F, Haring-Bolivar P, et al. A functionalized THz sensor for marker-free DNA analysis[J]. Physics in Medicine Biology, 2003, 48(22):3625.
[7] Al-Douseri F M, Chen Y, Zhang X C. THz wave sensing for petroleum industrial applications[J]. International Journal of Infrared and Millimeter Waves, 2006, 27(4):481-503.
[8] O'Hara J F, Withayachumnankul W, Al-Naib I. A review on thin-film sensing with terahertz waves[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(3):245-291.
[9] Luther J M, Jain P K, Ewers T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nature Materials, 2011, 10(5):361.
[10] Kim J B, Lee J H, Moon C K, et al. Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes[J]. Advanced Materials, 2013, 25(26):3571-3577.
[11] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11):6779.
[12] Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4(4):541-547.
[13] Qu Y, Li Q, Gong H, et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films[J]. Advanced Optical Materials, 2016, 4(3):480-486.
[14] Nicholls L H, Rodrguez-Fortuno F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nature Photonics, 2017, 11(10):628.
[15] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 2016, 17(1):407-413.
[16] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9):5319-5325.
[17] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of230 phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5):3027-3034.
[18] Lee D E, Lee Y J, Shin E, et al. Mach-zehnder interferometer refractive index sensor based on a plasmonic channel waveguide[J]. Sensors, 2017, 17(11):2584.
[19] Chu C S, Lin K Z, Tang Y H. A new optical sensor for sensing oxygen based on phase shift detection[J]. Sensors and Actuators B:Chemical, 2016, 223:606-612.
[20] York T, Powell S B, Gao S, et al. Bioinspired polarization imaging sensors:from circuits and optics to signal processing algorithms and biomedical applications[J]. Proceedings of the IEEE, 2014, 102(10):1450-1469.
[21] Maier S A, Andrews S R, Martin-Moreno L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17):176805.
[22] Joy S R, Erementchouk M, Mazumder P. Spoof surface plasmon resonant tunneling mode with high quality and Purcell factors[J]. Physical Review B, 2017, 95(7):075435.
[23] Garcia-Vidal F J, Martin-Moreno L, Pendry J B. Surfaces with holes in them:new plasmonic metamaterials[J]. Journal of Optics A:Pure and Applied Optics, 2005, 7(2):S97.
[24] Kats M A, Woolf D, Blanchard R, et al. Spoof plasmon analogue of metal-insulator-metal waveguides[J]. Optics Express, 2011, 19(16):14860-14870.
[25] Drexler C, Shishkanova T V, Lange C, et al. Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers:a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer[J]. Microchimica Acta, 2014, 181(15-16):1857-1862.
[26] Liu C, Liu P, Yang C, et al. Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications[J]. Journal of Optics, 2017, 19(11):115102.
[27] Okamoto K, Tsuruda K, Diebold S, et al. Terahertz sensor using photonic crystal cavity and resonant tunneling diodes[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(9):1085-1097.
[28] Benz A, Deutsch C, Brandstetter M, et al. Terahertz active photonic crystals for condensed gas sensing[J]. Sensors, 2011, 11(6):6003-6014.
[29] Astley V, Reichel K S, Jones J, et al. Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities[J]. Applied Physics Letters, 2012, 100(23):231108.
[30] Islam M, Chowdhury D R, Ahmad A, et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017, 35(23):5215-5221.
[31] Rich R L, Myszka D G. Advances in surface plasmon resonance biosensor analysis[J]. Current Opinion in Biotechnology, 2000, 11(1):54-61.
[32] Haes A J, Van Duyne R P. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(35):10596-10604.
[33] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes[J]. Nano Letters, 2016, 16(2):1502-1508.
[34] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424:824.
[35] Im H, Shao H, Park Y I, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor[J]. Nature Biotechnology, 2014, 32(5):490.
[36] Baaske M D, Foreman M R, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform[J]. Nat Nanotechnol, 2014, 9(11):933-942.
[37] Li Y C, Chang Y F, Su L C, et al. Differential-phase surface plasmon resonance biosensor[J]. Analytical Chemistry, 2008, 80(14):5590-5595.
[38] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685):847-855.
[39] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722):670-672.
[40] Yu N, Wang Q J, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9):730-735.
[41] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer, 2007.
[42] Ng B, Wu J, Hanham S M, et al. Spoof plasmon surfaces:a novel platform for THz sensing[J]. Advanced Optical Materials, 2013, 1(8):543-548.
[43] Huang W P. Coupled-mode theory for optical waveguides:an overview[J]. JOSA A, 1994, 11(3):963-983.
[44] Liu G, He M, Tian Z, et al. Terahertz surface plasmon sensor for distinguishing gasolines[J]. Applied Optics, 2013, 52(23):5695-5700.
[45] Chen Q, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13):14056-14062.
[46] Schrter U, Heitmann D. Surface-plasmon-enhanced transmission through metallic gratings[J]. Physical Review B, 1998, 58(23):15419-15421.
[47] Ng B, Hanham S M, Wu J, et al. Broadband terahertz sensing on spoof plasmon surfaces[J]. ACS Photonics, 2014, 1(10):1059-1067.
[48] Sihvola A. Metamaterials in electromagnetics[J]. Metamaterials, 2007, 1(1):2-11.
[49] Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6):063908.
[50] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.
[51] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700):1351-1353.
[52] Zhang F, Zhao Q, Kang L, et al. Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial[J]. Physical Review B, 2009, 80(19):195119.
[53] Cong L, Manjappa M, Xu N, et al. Fano resonances in terahertz metasurfaces:a figure of merit optimization[J]. Advanced Optical Materials, 2015, 3(11):1537-1543.
[54] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.
[55] Zheng G, Mhlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308.
[56] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2):829-834.
[57] Driscoll T, Andreev G O, Basov D N, et al. Tuned permeability in terahertz split-ring resonators for devices and sensors[J]. Applied Physics Letters, 2007, 91(6):062511.
[58] Chiam S Y, Singh R, Gu J, et al. Increased frequency shifts in high aspect ratio terahertz split ring resonators[J]. Applied Physics Letters, 2009, 94(6):064102.
[59] Cubukcu E, Zhang S, Park Y S, et al. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Applied Physics Letters, 2009, 95(4):043113.
[60] Wang B X, Wang G Z, Sang T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application[J]. Journal of Physics D:Applied Physics, 2016. 49(16):165307.
[61] Hu X, Xu G, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser Photonics Reviews, 2016, 10(6):962-969.
[62] Singh R, Al-Naib I A I, Koch M, et al. Asymmetric planar terahertz metamaterials[J]. Optics Express, 2010, 18(12):13044-13050.
[63] Wu X, Quan B, Pan X, et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor[J]. Biosensors and Bioelectronics, 2013, 42:626-631.
[64] Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Applied Physics Letters, 2007, 91(18):184102.
[65] Singh R, Cao W, Al-Naib I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17):171101.
[66] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Applied Physics Letters, 2010, 97(19):191906.
[67] Tao H, Strikwerda A C, Liu M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 2010, 97(26):261909.
[68] Srivastava Y K, Cong L, Singh R. Dual-surface flexible THz Fano metasensor[J]. Applied Physics Letters, 2017, 111(20):201101.
[69] Wu P C, Sun G, Chen W T, et al. Vertical split-ring resonator based nanoplasmonic sensor[J]. Applied Physics Letters, 2014, 105(3):033105.
[70] Liu Z, Liu Z, Li J, et al. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials[J]. Scientific Reports, 2016, 6:27817.
[71] Cheng Y, Mao X S, Wu C, et al. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing[J]. Optical Materials, 2016, 53:195-200.
[72] Wang W, Yan F, Tan S, et al. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators[J]. Photonics Research, 2017, 5(6):571-577.
[73] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402.
[74] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7):2342-2348.
[75] Cattoni A, Ghenuche P, Haghiri-Gosnet A M, et al. 3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography[J]. Nano Letters, 2011, 11(9):3557-3563.
[76] Cong L, Tan S, Yahiaoui R, et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers:a comparison with the metasurfaces[J]. Applied Physics Letters, 2015, 106(3):031107.
[77] Sun Y, Xia X, Feng H, et al. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Applied Physics Letters, 2008, 92(22):221101.
[78] O'Hara J F, Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials:sensitivity and limitations[J]. Optics Express, 2008, 16(3):1786-1795.
[79] Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1):014504.
[80] Yahiaoui R, Tan S, Cong L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. Journal of Applied Physics, 2015, 118(8):083103.
[81] Yang D, Tian H, Ji Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing[J]. Applied Optics, 2015, 54(1):1-5.
[82] Fan F, Gu W H, Wang X H, et al. Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array[J]. Applied Physics Letters, 2013, 102(12):121113.
[83] Hanham S M, Watts C, Otter W J, et al. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies[J]. Applied Physics Letters, 2015, 107(3):032903.
[84] Li X, Song J, Zhang J X J. Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub[J]. Optics Communications, 2016, 361:130-137.
[85] Zhang Y, Li T, Zeng B, et al. A graphene based tunable terahertz sensor with double Fano resonances[J]. Nanoscale, 2015, 7(29):12682-12688.
[86] He X, Zhang Q, Lu G, et al. Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials[J]. Rsc Advances, 2016, 6(57):52212-52218.
[87] Chen X, Fan W, Song C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing[J]. Carbon, 2018. 133:416-422.
[88] 李向军. 基于太赫兹时域谱技术的有机分子溶液检测与分析研究[D]. 杭州:浙江大学, 2011.
[89] Bui T S, Dao T D, Dang L H, et al. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules[J]. Scientific Reports, 2016, 6:32123.