[1] Li C, Bando Y, Liao M, et al. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire[J]. Applied Physics Letters, 2010, 97(16):161102.
[2] Downs C, Vandervelde T E. Progress in infrared photodetectors since 2000[J]. Sensors, 2013, 13(4):5054-5098.
[3] Wu P, Dai Y, Ye Y, et al. Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires[J]. Journal of Materials Chemistry, 2011, 21(8):2563-2567.
[4] Hansen M P, Malchow D S. Overview of SWIR detectors, cameras, and applications[C]//Thermosense Xxx. International Society for Optics and Photonics, 2008, 6939:69390I.
[5] Osborne B G, Fearn T, Hindle P H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis[M]. Berlin:Longman Scientific and Technical, 1993.
[6] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872):617.
[7] Jie J, Zhang W, Peng K, et al. Surface-dominated transport properties of silicon nanowires[J]. Advanced Functional Materials, 2008, 18(20):3251-3257.
[8] Zheng Daqing, Chen Weimin, Chen Li, et al. A laser ranging method with high precision and large range in high speed based on phase measurement[J]. Journal of OptoelectronicsLaser, 2015, 26(2):303-308. (in Chinese)郑大青, 陈伟民, 陈丽, 等. 一种基于相位测量的快速高精度大范围的激光测距法[J]. 光电子激光, 2015, 26(2):303-308.
[9] Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1):109-121.
[10] Wu Guoan, Luo Linbao. Development and application of near infrared photodetectors[J]. Physics, 2018, 47(3):137-142. (in Chinese)吴国安, 罗林保. 近红外光电探测器的发展与应用[J]. 物理, 2018, 47(3):137-142.
[11] Beling A, Campbell J C. InP-based high-speed photodetectors[J]. Journal of Lightwave Technology, 2009, 27(3):343-355.
[12] Kang Y, Mages P, Clawson A, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances[J]. IEEE Photonics Technology Letters, 2002, 14(11):1593-1595.
[13] Koester S J, Schaub J D, Dehlinger G, et al. Germanium-on-SOI infrared detectors for integrated photonic applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6):1489-1502.
[14] Harame D, Koester S, Freeman G, et al. The revolution in SiGe:impact on device electronics[J]. Applied Surface Science, 2004, 224(1):9-17.
[15] Eng P C, Song S, Ping B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength[J]. Nanophotonics, 2015, 4(3):277-302.
[16] Jones R, Park H D, Fang A W, et al. Hybrid silicon integration[J]. Journal of Materials Science:Materials in Electronics, 2009, 20(1):3-9.
[17] Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8):527.
[18] Kang Y, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2009, 3(1):59.
[19] Vivien L, Osmond J, Fdli J-M, et al. 42 GHz p.i.n Germanium photodetector integrated in a silicon-oninsulator waveguide[J]. Opt Express, 2008, 17:6252-6257.
[20] Wang J, Lee S. Ge-photodetectors for Si-based optoelectronic integration[J]. Sensors, 2011, 11(1):696-718.
[21] Alloatti L, Srinivasan S A, Orcutt J S, et al. Waveguide-coupled detector in zero-change complementary metal-oxide-semiconductor[J]. Applied Physics Letters, 2015, 107(4):041104.
[22] Meng H, Atabaki A, Orcutt J S, et al. Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength[J]. Opt Express, 2015, 23:32643-32653.
[23] Mailoa J P, Akey A J, Simmons C B, et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon[J]. Nature Communications, 2014, 5:3011.
[24] Casalino M, Coppola G, Iodice M, et al. Near-infrared sub-bandgap all-silicon photodetectors:state of the art and perspectives[J]. Sensors, 2010, 10(12):10571-10600.
[25] Kimata M, Ozeki T, Tsubouchi N, et al. PtSi Schottky-barrier infared focal plane arrays[C]//Imaging System Technology for Remote Sensing. International Society for Optics and Photonics, 1998, 3505:2-13.
[26] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030):702-704.
[27] Maier S A. Plasmonics:Fundamentals and Applications[M]. Berlin:Springer Science Business Media, 2007.
[28] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer, 2007.
[29] Wang Zhenlin. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3):287-324.(in Chinese)王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3):287-324.
[30] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2):95-103.
[31] Neumann O, Urban A S, Day J, et al. Solar vapor generation enabled by nanoparticles[J]. Acs Nano, 2013, 7(1):42-49.
[32] Hogan N J, Urban A S, Ayala-Orozco C, et al. Nanoparticles heat through light localization[J]. Nano Letters, 2014, 14(8):4640-4645.
[33] Sze S M, Ng K K. Physics of Semiconductor Devices[M]. New Jersey:John Wiley Sons, 2006.
[34] Zhang C, Wu K, Zhan Y, et al. Planar microcavity-integrated hot-electron photodetector[J]. Nanoscale, 2016, 8(19):10323-10329.
[35] Zhan Y, Wu K, Zhang C, et al. Infrared hot-carrier photodetection based on planar perfect absorber[J]. Optics Letters, 2015, 40(18):4261-4264.
[36] Sze S M, Moll J L, Sugano T. Range-energy relation of hot electrons in gold[J]. Solid-State Electronics, 1964, 7(7):509-523.
[37] White T P, Catchpole K R. Plasmon-enhanced internal photoemission for photovoltaics:theoretical efficiency limits[J]. Applied Physics Letters, 2012, 101(7):073905.
[38] Donati S. Photodetectors[M]. New Jersey:Prentice Hall PTR, 1999.
[39] Kan T, Ajiki Y, Matsumoto K, et al. Si process compatible near-infrared photodetector using Au/Si nano-pillar array[C]//Micro Electro Mechanical Systems (MEMS), 2016 IEEE 29th International Conference on. IEEE, 2016:624-627.
[40] Ajiki Y, Kan T, Yahiro M, et al. Near infrared photo-detector using self-assembled formation of organic crystalline nanopillar arrays[C]//Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 2014:147-150.
[41] Ajiki Y, Kan T, Yahiro M, et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars[J]. Applied Physics Letters, 2016, 108(15):151102.
[42] Schider G, Krenn J R, Hohenau A, et al. Plasmon dispersion relation of Au and Ag nanowires[J]. Physical Review B, 2003, 68(15):155427.
[43] Ajiki Y, Kan T, Yahiro M, et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars[J]. Applied Physics Letters, 2016, 108(15):151102.
[44] Yang Z, Liu M, Liang S, et al. Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection[J]. Optics Express, 2017, 25(17):20268-20273.
[45] Knight M W, Wang Y, Urban A S, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission[J]. Nano Letters, 2013, 13(4):1687-1692.
[46] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14(6):3510-3514.
[47] Desiatov B, Goykhman I, Mazurski N, et al. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime[J]. Optica, 2015, 2(4):335-338.
[48] Wen L, Chen Y, Liang L, et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanoco-mposites[J]. ACS Photonics, 2017, 5(2):581-591.
[49] Wen L, Chen Y, Liu W, et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction[J]. Laser Photonics Reviews, 2017, 11(4):1700059.
[50] Qi Z, Zhai Y, Wen L, et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection[J]. Nanotechnology, 2017, 28(27):275202.
[51] Goykhman I, Desiatov B, Khurgin J, et al. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band[J]. Optics Express, 2012, 20(27):28594-28602.
[52] Goykhman I, Desiatov B, Khurgin J, et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime[J]. Nano Letters, 2011, 11(6):2219-2224.
[53] Muehlbrandt S, Melikyan A, Harter T, et al. Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception[J]. Optica, 2016, 3(7):741-747.
[54] Sobhani A, Knight M W, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 2013, 4:1643.
[55] Qin L, Zhang C, Li R, et al. Silicon-gold core-shell nanowire array for an optically and electrically characterized refractive index sensor based on plasmonic resonance and Schottky junction[J]. Optics Letters, 2017, 42(7):1225-1228.
[56] Phillips K S. Jir Homola (Ed.):Surface plasmon resonance-based sensors[J]. Analytical and Bioanalytical Chemistry, 2008, 390(5):1221-1222.
[57] Tetz K A, Pang L, Fainman Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance[J]. Optics Letters, 2006, 31(10):1528-1530.
[58] Porto J, Garcia-Vidal F, Pendry J. Transmission resonances on metallic gratings with very narrow slits[J]. Physical Review Letters, 1999, 83(14):2845.
[59] Gordon R, Brolo A, Mckinnon A, et al. Strong polarization in the optical transmission through elliptical nanohole arrays[J]. Physical Review Letters, 2004, 92(3):037401.
[60] Li W, Coppens Z J, Besteiro L V, et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Communications, 2015, 6:8379.
[61] Chalabi H, Schoen D Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Lett, 2014, 14:1374-1380.
[62] Afshinmanesh F, White J S, Cai W, et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter[J]. Nanophotonics, 2012, 1(2):125-129.
[63] Wu C Y, Pan Z Q, Wang Y Y, et al. Core-shell silicon nanowire array-Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector[J]. Journal of Materials Chemistry C, 2016, 4(46):10804-10811.
[64] Alavirad M, Olivieri A, Roy L, et al. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors[J]. Optics Express, 2016, 24(20):22544-22554.
[65] Lin K T, Chen H L, Lai Y S, et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths[J]. Nature Communications, 2014, 5:3288.
[66] Casalino M, Iodice M, Sirleto L, et al. Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm[J]. Journal of Applied Physics, 2013, 114(15):153103.