[1] Glennie C L, Carter W E, Shrestha R L, et al. Geodetic imaging with airborne LiDAR:the earth's surface revealed[J]. Reports on Progress in Physics, 2013, 76(8):086801.
[2] Baltsavias E P. Airborne laser scanning:existing systems and firms and other resources[J]. Isprs Journal of Photogrammetry Remote Sensing, 1999, 54(2-3):164-198.
[3] Nelson R. How did we get here? An early history of forestry LiDAR[J]. Canadian Journal of Remote Sensing, 2013, 39(sup1):S6-S17.
[4] Rees W G. Physical Principles of Remote Sensing[M] Cambridge:Cambridge University Press, 2001:372.
[5] Roncat A, Bergauer G, Pfeifer N. B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data[J]. Isprs Journal of Photogrammetry Remote Sensing, 2011, 66(4):418-428.
[6] Wang C, Li Q, Liu Y, et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. Isprs Journal of Photogrammetry Remote Sensing, 2015, 101(101):22-35.
[7] Roncat A, Wagner W, Melzer T, et al. Echo detection and localization in full-waveform airborne laser scanner data using the averaged square difference function estimator[J]. Photogrammetric Journal of Finland, 2008, 21:62-75.
[8] Wagner W, Ullrich A, Melzer T, et al. From single-pulse to full-waveform airborne laser scanners:potential and practical challenges[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014:201-206.
[9] Chauve A, Mallet C, Bretar F, et al. Processing full-waveform LiDAR data:modelling raw signals[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007, XXXVI(Part 3/W52):102-107.
[10] Mallet C, Bretar F. Full-waveform topographic LiDAR:state-of-the-art[J]. Isprs Journal of Photogrammetry Remote Sensing, 2009, 64(1):1-16.
[11] Slota M. Decomposition techniques for full-waveform airborne laser scanning data[J]. Geomatics and Environmental Engineering, 2014, 8(1):61-74.
[12] Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. Isprs Journal of Photogrammetry Remote Sensing, 2006, 60(2):100-112.
[13] Jutzi B, Stilla U. Range determination with waveform recording laser systems using a wiener filter[J]. Isprs Journal of Photogrammetry Remote Sensing, 2006, 61(2):95-107.
[14] Wu J, Aardt J A N V, Asner G P. A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation[J]. IEEE Transactions on Geoscience Remote Sensing, 2011, 49(6):2402-2414.
[15] Wang Dandi, Xu Qing, Xing Shuai, et al. Comparison of signal extraction method for airborne LiDAR bathymetry based on deconvolution[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):161-169. (in Chinese)
[16] Lin Yushan, Zhang Zhi'an. Waveform analysis and landcover classification using airborne full-waveform LiDAR data[J]. Journal of Photogrammetry and Remote Sensing, 2014, 19(2):75-91. (in Chinese)
[17] Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD:a new LiDAR simulator for waters[J]. IEEE Geoscience Remote Sensing Letters, 2012, 9(4):744-748.
[18] Sun Lei, Zhang Zhili, Tan Lilong, et al. Denoising method of dynamic grating Moir signal based on wavelet threshold[J]. Infrared and Laser Engineering, 2010, 39(3):576-580. (in Chinese)
[19] Hofton M, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience Remote Sensing, 2000, 38(4):1989-1996.
[20] Wong H, Antoniou A. Characterization and decomposition of waveforms for Larsen 500 airborne system[J]. IEEE Transactions on Geoscience Remote Sensing, 1991, 29(6):912-921.
[21] Zhou Hui, Li Song, Wang Liangxun, et al. Influence of noise on range error for satellite laser altimeter[J]. Infrared and Laser Engineering, 2015, 44(8):2256-2261. (in Chinese)
[22] Li Pengcheng, Xu Qing, Xing Shuai, et al. Full-waveform LiDAR data decomposition method based on global convergent LM[J]. Infrared and Laser Engineering, 2015, 44(8):2262-2267. (in Chinese)
[23] Mor J J. The Levenberg-Marquardt algorithm:implemen-tation and theory[J]. Lecture Notes in Mathematics, 1978, 630:105-116.
[24] Guenther G C. Airborne laser hydrography:system design and performance factors[R]. MD:National Ocean Service 1, National Oceanic and Atmospheric Administration, 1985.
[25] Klett J D. Stable analytical inversion solution for processing LiDAR returns[J]. Appl Opt, 1981, 20(2):211-220.
[26] Billard B, Abbot R H, Penny M F. Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder[J]. Applied Optics, 1986, 25(13):2080.
[27] Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Study of the capability of minimum depth using an airborne laser bathymetry[J]. Acta Optica Sinica, 2004, 24(10):1406-1410. (in Chinese)