[1] Zhang G T. Study on LiF:F_2~-crystal Q-switch characteristics[J]. Laser Journal, 1987, 8(6):358-361.
[2] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1969, 187(4736):134-136.
[3] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking[J]. Applied Physics Letters, 1981, 38(9):671-672.
[4] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863):509-513.
[5] Yang Jing, Gong Cheng, Zhao Jiayu, et al. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1):77-85. (in Chinese)
[6] Zhang Junzhan, Wang Yuqian, Zhang Ying, et al. Effect of feeding speed on micro-hole drilling in TiC ceramic by femtosecond laser[J]. Optics and Precision Engineering, 2015, 23(6):1565-1571. (in Chinese)
[7] Wang Yanfang, Li Hao, Shi Zhiqiang, et al. Laser cladding Fe-based solid solution alloy coating with high corrosion resistance[J]. Infrared and Laser Engineering, 2017, 1(8):0806001. (in Chinese)
[8] Zhang Y, Wang Y, Zhang J, et al. Micromachining features of TiC ceramic by femtosecond pulsed laser[J]. Ceramics International, 2015, 41(5):6525-6533.
[9] Luzius S, Sailer M, Siebert C, et al. PCB drilling with high power picosecond lasers[J]. Physics Procedia, 2013, 41:723-726.
[10] Fann W S, Storz R, Tom H W, et al. Electron thermalization in gold[J]. Physical Review B Condensed Matter, 1992, 46(20):13592.
[11] Wellershoff S S, Hohlfeld J, Gdde J, et al. The role of electron-phonon coupling in femtosecond laser damage of metals[J]. Applied Physics A, 1999, 69(1):S99-S107.
[12] Kojisugioka, Ya Cheng. Ultrafast Laser Processing:From Micro-to Nanoscale[M]. Singapore:Pan Stanford Pub, 2013:225-261.
[13] Corkum P B, Brunel F, Sherman N K, et al. Thermal response of metals to ultrashort-pulse laser excitation[J]. Physical Review Letters, 1988, 61(25):2886.
[14] Breitling D, Dausinger F H. Precise drilling of steel with ultrashort pulsed solid state lasers[C]//Laser Processing of Advanced Materials and Laser Microtechnologies, 2003:271-279.
[15] Wang Xinlin. Femtosecond laser ablation of metallic materials and fabrication of micro-components[D]. Wuhan:Huazhong University of Science and Technology, 2007. (in Chinese)
[16] Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters, 1982, 7(5):196.
[17] Yong J, Becker M F, Walser R M. Laser-induced damage on single-crystal metal surfaces[J]. Journal of the Optical Society of America B, 1988, 5(3):648-659.
[18] Raciukaitis G, Gedvilas M. Accumulation effects in laser ablation of metals with high-repetition-rate lasers[C]//SPIE, 2008, 7005:70052L.
[19] Nolte S, Momma C, Jacobs H, et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B Optical Physics, 1997, 14(10):2716-2722.
[20] Ashkenasi D, Rosenfeld A, Varel H, et al. Laser processing of sapphire with picosecond and sub-picosecond pulses[J]. Applied Surface Science, 1997, 120(1-2):65-80.
[21] Klein-Wiele J H, Bekesi J, Simon P. Sub-micron patterning of solid materials with ultraviolet femtosecond pulses[J]. Applied Physics A, 2004, 79(4-6):775-778.
[22] Zang Zhigang, Zeng Xiaofeng, Du Jihe, et al. Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes[J]. Optics Letters, 2016, 41(15):3463.
[23] Leitz K H, Redlingshfer B, Reg Y, et al. Metal ablation with short and ultrashort laser pulses[J]. Physics Procedia, 2011, 12(1):230-238.
[24] Dausinger F, Lichtner F, Lubatschowski H. Femtosecond Technical and Medical Applications[M]. Berlin:Springer, 2004.
[25] Dausinger F. Precise drilling with short-pulsed lasers[C]//SPIE, 2000, 3888:180-187.
[26] Kononenko T V, Klimentov S M, Konov V I, et al. Propagation of short-pulsed laser radiation and stages of ablative deep-channel formation[C]//SPIE, 2001, 4274(4274):248.
[27] Kononenko T V, Konov V I, Garnov S V, et al. Dynamics of deep short pulse laser drilling:ablative stages and light propagation[J]. Laser Physics, 2001, 11(3):343.
[28] Garnov S V, Breitling D, Dausinger F. Hole formation process in laser deep drilling with short and ultrashort pulses[C]//SPIE, 2002, 4426(4426):108.
[29] Dring S, Richter S, Nolte S, et al. In-situ observation of the hole formation during deep drilling with ultrashort laser pulses[C]//SPIE, 2011, 7925(1):330-338.
[30] Zhao W, Wang W, Jiang G, et al. Ablation and morphological evolution of micro-holes in stainless steel with picosecond laser pulses[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12):1713-1720.
[31] Zhao Wanqin. Studies on technologies and applications in micro-hole percussion drilling of picosecond ultrashort pulse laser of metals[D]. Xi'an:Xi'an Jiaotong University, 2016. (in Chinese)
[32] Dring S, Richter S, Ullsperger T, et al. Influence of ambient pressure on the hole formation process in ultrashort pulse laser deep drilling[C]//SPIE LASE, 2013, 8611:86111D.
[33] Dring S, Richter S, Nolte S, et al. In situ imaging of hole shape evolution in ultrashort pulse laser drilling[J]. Optics Express, 2010, 18(19):20395-20400.
[34] Dring S, Richter S, Tnnermann A, et al. Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon[J]. Applied Physics A, 2011, 105(1):69-74.
[35] Xia Bo. Mechanism and online observation of high-aspect-ratio, high-quality microholes drilling with femtosecond laser[D]. Beijing:Beijing Institute of Technology, 2016. (in Chinese)
[36] Kaakkunen J J J, Silvennoinen M, Paivasaari K, et al. Water-assisted femtosecond laser pulse ablation of high aspect ratio holes[J]. Physics Procedia, 2011, 12(1):89-93.
[37] Hidai H, Kuroki Y, Matsusaka S, et al. Curved drilling via inner hole laser reflection[J]. Precision Engineering, 2016, 46:96-103.
[38] Lin C H, Rao Z H, Jiang L, et al. Investigations of femtosecond-nanosecond dual-beam laser ablation of dielectrics[J]. Optics Letters, 2010, 35(14):2490-2492.
[39] Lin C H, Rao Z H, Jiang L, et al. Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system[C]//SPIE LASE, 2010:7585.
[40] Sugioka K, Midorikawa K. VUV-UV multiwavelength excitation process for high-quality ablation of fused silica[C]//SPIE, 2013, 8777:04.
[41] Tan B, Venkatkrishnan K, Sivakumar N R, et al. Laser drilling of thick material using femtosecond pulse with a focus of dual-frequency beam[J]. Optics Laser Technology, 2003, 35(3):199-202.
[42] Kamata M, Tsujikawa S, Sumiyoshi T, et al. Dual wavelength femtosecond laser materials processing[C]//Lasers and Electro-Optics, CLEO 2007, 2007:1-2.
[43] Zoppel S, Zehetner J, Reider G A. Two color laser ablation:Enhanced yield, improved machining[J]. Applied Surface Science, 2007, 253(19):7692-7695.
[44] Zhao W, Wang W, Mei X, et al. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel[J]. Optics Laser Technology, 2014, 58(6):94-99.
[45] Forsman A C, Banks P S, Perry M D, et al. Doublepulse machining as a techniques for the enhancement of material removal rates in laser machining of metals[J]. Journal of Applied Physics, 2005, 98(3):474-477.
[46] Jiang L, Tsai H L. Modeling of ultrashort laser pulse-train processing of metal thin films[J]. International Journal of Heat Mass Transfer, 2007, 50(17-18):3461-3470.
[47] Huang H, Yang L M, Liu J. Micro-hole drilling with femtosecond fiber laser[C]//SPIE, 2013, 8607:86070K.
[48] Nebel A, Herrmann T, Henrich B, et al. Fast micromachining using picosecond lasers[C]//SPIE, 2005:5706.
[49] Kling R, Mottay E. Metal microdrilling combining high power femtosecond laser and trepanning head[C]//SPIE, 2013, 8608:86080F.
[50] Lee H M, Choi J H, Moon S J. Determining the machining parameters for femtosecond laser helical drilling of aluminosilicate glass substrate[J]. International Journal of Precision Engineering Manufacturing, 2017, 18(7):923-930.
[51] Romoli L, Vallini R. Experimental study on the development of a micro-drilling cycle using ultrashort laser pulses[J]. Optics Lasers in Engineering, 2016, 78:121-131.
[52] Zhang H, Di J, Ming Z, et al. An investigation on the hole quality during picosecond laser helical drilling of stainless steel 304[J]. Applied Physics A, 2015, 119(2):1-8.
[53] Breitling D, Dausinger F. Fundamental aspects in machining of metals with short and ultrashort laser pulses[C]//SPIE, 2004, 5339:49-63.
[54] Knappe R, Weis A, Nebel A. Scaling ablation rates for picosecond lasers using burst micromachining[C]//SPIE, 2010, 7585:75850H.
[55] Klimt B. Micromachining with industrial picosecond lasers[J]. Laser Technik Journal, 2007, 4(1):40-43.
[56] Weck A, Crawford T H R, Wilkinson D S, et al. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses[J]. Applied Physics A, 2008, 90(3):537-543.
[57] Ancona A, Rser F, Limpert J, et al. Ultrashort pulse laser drilling of metals using a high-repetition rate high average power fiber CPA system[C]//SPIE, 2009, 7203:720311.