[1] Droeschel D, Schwarz M, Behnke S. Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner[J]. Robotics Autonomous Systems, 2017, 88:104-115.
[2] Ye Y, Fu L, Li B. Object detection and tracking using multi-layer laser for autonomous urban driving[C]//International Conference on Intelligent Transportation Systems. IEEE, 2016:259-264.
[3] Zhang Yi, Du Fanyu, Luo Yuan, et al. Map-building approach based on laser and depth visual sensor fusion SLAM[J]. Application Research of Computers, 2016, 33(10):2970-2972. (in Chinese)张毅, 杜凡宇, 罗元, 等. 一种融合激光和深度视觉传感器的SLAM地图创建方法[J]. 计算机应用研究, 2016, 33(10):2970-2972.
[4] Lenac K, Kitanov A, Cupec R, et al. Fast planar surface 3D SLAM using LIDAR[J]. Robotics Autonomous Systems, 2017, 92:197-220.
[5] Alismail H, Browning B. Automatic calibration of spinning actuated lidar internal parameters[J]. Journal of Field Robotics, 2015, 32(5):723-747.
[6] Du Liang, Zhang Tie, Dai Xiaoliang. Robot kinematic parameters compensation by measuring distance error using laser tracker system[J]. Infrared and Laser Engineering, 2015, 44(8):2351-2357. (in Chinese)杜亮, 张铁, 戴孝亮. 激光跟踪仪测量距离误差的机器人运动学参数补偿[J]. 红外与激光工程, 2015, 44(8):2351-2357.
[7] Bogue R. Sensors for robotic perception. Part two:positional and environmental awareness[J]. Industrial Robot, 2015, 42(6):502-507.
[8] Liu Jiayin, Tang Zhenmin, Wang Andong, et al. Negative obstacle detection in unstructured environment based on multiple LiDARs and compositional features[J]. Robot, 2017, 39(5):638-651. (in Chinese)刘家银, 唐振民, 王安东, 等. 基于多线激光雷达与组合特征的非结构化环境负障碍物检测[J]. 机器人, 2017, 39(5):638-651.
[9] Zheng Han. The measurement calibration of terrestrial 3D laser scanning[J]. Heilongjiang Science and Technology Information, 2015(16):61-62. (in Chinese)郑瀚. 地面三维激光扫描检校测量[J]. 黑龙江科技信息, 2015(16):61-62.
[10] Chu Zhihui, Duan Changlong. Research of calibrating vechicle laser scanner's external parameters[J]. Beijing Surveying and Mapping, 2016(2):55-58. (in Chinese)褚智慧, 段昌龙. 车载三维激光扫描系统外参数标定研究[J]. 北京测绘, 2016(2):55-58.
[11] Zhang Q, Pless R. Extrinsic calibration of a camera and laser range finder (improves camera calibration)[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005(3):2301-2306.
[12] Zhou L, Deng Z. A new algorithm for computing the projection matrix between a LIDAR and a camera based on line correspondences[C]//International Congress on Ultra Modern Telecommunications and Control Systems and Workshops. IEEE, 2012:436-441.
[13] Fernndez-Moral E, Gonzlez-Jimnez J, Arevalo V. Extrinsic calibration of 2D laser rangefinders from perpen-dicular plane observations[J]. International Journal of Robotics Research, 2015, 34(11):1401-1417.
[14] Tian Xiangrui, Xu Lijun, Xu Teng, et al. Calibration of installation angles for mobile LiDAR scanner system[J]. Infrared and Laser Engineering, 2014, 43(10):3292-3297. (in Chinese)田祥瑞, 徐立军, 徐腾, 等. 车载LiDAR扫描系统安置误差角检校[J]. 红外与激光工程, 2014, 43(10):3292-3297.
[15] Levenberg K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly Applied Math, 1944, 2(4):436-438.
[16] Yang Junjian, Wu Liangcai. A robust point cloud plane fitting method based on RANSAC algorithm[J]. Beijing Surveying and Mapping, 2016(2):73-75. (in Chinese)杨军建, 吴良才. 基于RANSAC算法的稳健点云平面拟合方法[J]. 北京测绘, 2016(2):73-75.
[17] Li Xi, Han Xie, Xiong Fengguang. Plane fitting of point clouds based on RANSAC and TLS[J]. Computer Engineering and Design, 2017, 38(1):123-126. (in Chinese)李希, 韩燮, 熊风光. 基于RANSAC和TLS的点云平面拟合[J]. 计算机工程与设计, 2017, 38(1):123-126.
[18] Peter H Schnemann. A generalized solution of the orthogonal procrustes problem[J]. Psychometrika, 1966, 31(1):1-10.