[1] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles[J]. Applied Physics Letters, 1984, 45(3):284-286.
[2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications[J]. Laser Photonics Reviews, 2011, 5(1):124-166.[3 Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology[J]. Optical Engineering, 2017, 56(1):010901.
[3] Tani M, Matsuura S, Sakai K, et al. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs[J]. Applied Optics, 1997, 36(30):7853-7859.
[4] Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas[J]. Journal of the Optical Society of America B, 1996, 13(11):2424-2436.
[5] Tani M, Yamamoto K, Estacio E S, et al. Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(4):393-404.
[6] Hou L, Shi W. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability[J]. IEEE Transactions on Electron Devices, 2013, 60(5):1619-1624.
[7] Reklaitis A. Comparison of efficiencies of GaAs-based pulsed terahertz emitters[J]. Journal of Applied Physics, 2007, 101:116104.
[8] Miyamaru F, Saito Y, Yamamoto K, et al. Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas[J]. Applied Physics Letters, 2010, 96(21):211104.
[9] Gao Y, Yang C E, Chang Y, et al. Terahertz-radiation-enhanced broadband terahertz generation from large aperture photoconductive antenna[J]. Applied Physics B, 2012, 109(1):133-136.
[10] Liu T A, Chou R H, Pan C L. Dependence of terahertz radiation on gap sizes of biased multi-energy arsenic-ion-implanted and semi-insulating GaAs antennas[J]. Applied Physics B, 2010, 95(4):739-744.
[11] Kono S, Gu P, Tani M, et al. Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces[J]. Applied Physics B, 2000, 71(6):901-904.
[12] Zhang J, Mikulics M, Adam R, et al. Generation of THz transients by photoexcited single-crystal GaAs meso-structures[J]. Applied Physics B, 2013, 113(3):339-344.
[13] Zhang J, Tuo M, Liang M, et al. Contribution assessment of antenna structure and in-gap photocurrent in terahertz radiation of photoconductive antenna[J]. J App Phys, 2018, 124:053107.
[14] Darrow J T, Zhang X C, Auston D H, et al. Saturation properties of large-aperture photoconducting antennas[J]. IEEE Journal of Quantum Electronics, 1992, 28(6):1607-1616.
[15] Keil U D, Dykaar D R. Ultrafast pulse generation in photoconductive switches[J]. IEEE Journal of Quantum Electronics, 1996, 32(9):1664-1671.
[16] Benicewicz P K, Taylor A J. Scaling of terahertz radiation from large-aperture biased InP photoconductors[J]. Optics Letters, 1993, 18(16):1332-1334.
[17] Sano E, Shibata T. Fullwave analysis of picosecond photoconductive switches[J]. IEEE Journal of Quantum Electronics, 1990, 26(2):372-377.
[18] Moreno E, Pantoja M F, Garcia S G, et al. Time-domain numerical modeling of THz photoconductive antennas[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4):490-500.
[19] Zhang J, Tuo M, Liang M, et al. Numerical analysis of terahertz generation characteristics of photoconductive antenna[C]//IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014:1746-1747.
[20] Zhang J. Numerical analysis of the emission properties of terahertz photoconductive antenna by finite-difference-time-domain method[J]. arXiv Preprint arXiv, 2014, 1407.2881:1-11.