[1] Bogachev A V, Garanin S G, Dudov A M, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2):95-98.
[2] Krupke W F, Beach R J, Payne S A, et al. DPAL:a new class of lasers for CW power beaming at ideal photovoltaic cell wavelengths[C]//AIP, 2004, 702:367-377.
[3] Pitz G A, Stalnaker D M, Guild E M, et al. Advancements in flowing diode pumped alkali lasers[C]//SPIE, 2016, 9729:972902.
[4] Yang Zining, Wang Hongyan, Hua Weihong, et al. Diode-pumped rubidium vapor laser[J]. High Power Laser Particle Beams, 2011, 23(9):2273-2274. (in Chinese)
[5] Xu Cheng, Tan Rongqing, Li Zhiyong, et al. 2.8W linearly polarized output of rubidium vapor laser with diode pumping[J]. Chinese Journal of Lasers, 2013, 40(1):0102009. (in Chinese)
[6] Li Zhiyong, Tan Rongqing, Huang Wei, et al. Diode pumped cesium vapor laser[J]. High Power Laser and Particle Beams, 2014, 26(1):1657-1660. (in Chinese)
[7] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Efficient potassium diode pumped alkali laser operating in pulsed mode[J]. Optics Express, 2014, 22(14):17266-17270.
[8] Zhdanov B V, Rotondaro M D, Shaffer M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system[J]. Optics Communications, 2015, 354:256-258.
[9] Beach R J, Krupke W F, Kanz V K, et al. End-pumped continuous-wave alkali vapor lasers:experiment, model, and power scaling[J]. Journal of the Optical Society of America B, 2004, 21(12):2151-2163.
[10] Hager G, Perram G. A three-level analytic model for alkali metal vapor lasers:part I. Narrowband optical pumping[J]. Applied Physics B, 2010, 101(2):45-56.
[11] Gao F, Chen F, Xie J, et al. Comparative study of diode-pumped hydrocarbon free Rb and K vapor lasers[J]. Optics Laser Technology, 2014, 58(58):166-171.
[12] Li Lin, Tan Rongqing, Xu Cheng, et al. Analysis on threshold characteristics of diode pumped rubidium vapor lasers[J]. High Power Laser and Particle Beams, 2014, 26(2):26-32. (in Chinese)
[13] Huang Wei, Tan Rongqing, Li Zhiyong. Theoretical investigation on threshold characteristics of diode side-pumped rubidium vapor laser[J]. Infrared and Laser Engineering, 2016, 45(2):0206001. (in Chinese)
[14] Ciury J, Krause L. 42P1/2-42P3/2 mixing in potassium induced in collisions with noble gas atoms[J]. J Quant Spectrosc Radiat Transf, 1982, 28(28):457-461.
[15] Wang H, Gould P L, Stwalley W C. Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0-g pure long-range state and the long-range potential constants[J]. Journal of Chemical Physics, 1997, 106(19):7899-7912.
[16] Pitz G A, Sandoval A J, Zameroski N D, et al. Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates[J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2012, 113(5):387-395.
[17] Pitz G A, Sandoval A J, Tafoya T B, et al. Pressure broadening and shift of the rubidium D1 transition and potassium D2 transitions by various gases with comparison to other alkali rates[J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2014, 140(6):18-29.