[1] Zhao Z, Deng L, Bai L, et al. Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis[J]. Optics Laser Technology, 2019, 110:145-151.
[2] Sperling Brent A, John Hoang, William A Kimes, et al. Time-resolved surface infrared spectroscopy during atomic layer deposition[J]. Applied Spectroscopy, 2013, 67(9):1003-1012.
[3] Yoshida Y, Oguma H, Morino I, et al. Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer[J]. Applied Optics, 2010, 49(1):71-79.
[4] O'brien C M, Vargis E, Rudin A, et al. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy[J]. American Journal of Obstetrics and Gynecology, 2018, 218(5):528.e.
[5] Ai Y, Liang P, Wu Y, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS)[J]. Food Chemistry, 2018, 241:427-433.
[6] Golay M J E. Multi-slit spectrometry[J]. Journal of the Optical Society of America, 1949, 39(6):437-444.
[7] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[8] Labaw C. Airborne imaging spectrometer:an advanced concept instrument[C]//Proceedings of SPIE, 1984, 430:68-75.
[9] Green R O, Chrien T G, Nielsen P J, et al. Airborne visible/infrared imaging spectrometer (AVIRIS):recent improvements to the sensor and data facility[C]//Proceedings of SPIE, 1993, 1937:180-190.
[10] Babey S K, Anger C D. Compact airborne spectrographic imager (CASI):a progress review[C]//Proceedings of SPIE, 1993, 1937:152-164.
[11] Braam B M, Okkonen J T, Aikio M, et al. Design and first test results of the Finnish airborne imaging spectrometer for different applications (AISA)[C]//Proceedings of SPIE, 1993, 1937:142-152.
[12] Rickard L J, Basedow R W, Zalewski E F, et al. HYDICE:An airborne system for hyperspectral imaging[C]//Proceedings of SPIE, 1993, 1937:173-180.
[13] Shimota A, Kobayashi H, Kadokura S. Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator[J]. Applied Optics, 1999, 38(3):571-576.
[14] Cocks T, Jenssen R, Stewart A, et al. The HyMapTM airborne hyperspectral sensor:the system, calibration and performance[C]//Proc of the 1st EarseL workshop on Imaging Spectroscopy, 1998, 5:37-42.
[15] Agar B, Coulter D. Remote sensing for mineral exploration-A decade perspective 1997-2007[C]//Proceedings of Exploration, 2007, 7:109-136.
[16] Barnsley M J, Settle J J, Cutter M A, et al. The PROBA/CHRIS mission:A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1512-1520.
[17] Tong Qingxi, Zhang Bing, Zheng Lan. Hyperspectral Remote Sensing[M]. Beijing:Higher Education Press, 2006. (in Chinese)
[18] Gao Hengzhen. Research on classification technique for Hyperspectral remote sensing imagery[D]. Changsha:National University of Defense Technology, 2011. (in Chinese)
[19] Han Z, Jin Y, Yun C. Spatial and temporal distributions of suspended sediment contents in the Yangtze River Estuary using the CMODIS image data from China's SZ-3 Spacecraft[J]. Journal of Remote Sensing, 2006, 10(3):381-386. (in Chinese)
[20] Zhao B, Yang J, Chang L, et al. Optical design and on-orbit performance evaluation of the imaging spectrometer for Chang'e-1 lunar satellite[J]. Acta Photonica Sinica, 2009, 38(3):479-483. (in Chinese)
[21] Descour M, Dereniak E. Computed-tomography imaging spectrometer:experimental calibration and reconstruction results[J]. Applied Optics, 1995, 34(22):4817-4826.
[22] Cimino P, Neese F, Barone V. Computational spectroscopy:methods, experiments and applications[J]. Materialstoday, 2010, 13(2):55.
[23] Wei R, Zhou J, Jing J, et al. Developments and trends of the computed tomography imaging spectrometers[J].Spectroscopy and Spectral Analysis, 2010, 30(10):2866-2873. (in Chinese)
[24] Okamoto T, Yamaguchi I. Simultaneous acquisition of spectral image information[J]. Optics Letters, 1991, 16(16):1277-1279.
[25] Mooney J M, Vickers V E, An M, et al. High-throughput hyperspectral infrared camera[J]. Journal of the Optical Society of America A, 1997, 14(11):2951-2961.
[26] Fang J, Zhao D, Jiang Y. A new method in imaging spectrometry[C]//Proceedings of SPIE, 2002, 4922:56-62.
[27] Hagen N, Dereniak E L. Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28):F85-F95.
[28] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[29] Cands E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509.
[30] Brady D J, Gehm M E. Compressive imaging spectrometers using coded apertures[C]//Visual Information Processing, 2006, 6246:62460A.
[31] Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21):14013-14027.
[32] Wagadarikar A, John R, Willett R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10):B44-B51.
[33] Galvis L, Arguello H, Arce G R. Coded aperture design in mismatched compressive spectral imaging[J]. Applied Optics, 2015, 52(10):2153-2162.
[34] Parada A, Arce G R. Spectral Super-resolution in colored coded aperture spectral imaging[J]. Imaging and Applied Optics, 2015, 2(4):440-455.
[35] Ma Y, Lv Q, Liu Y, et al. Effect evaluation of optical magnification errors for coded aperture spectrometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(11):3157-3161. (in Chinese)
[36] Lou J, Li Y, Xiong L. Catadioptric omnidirectional compressive imaging based on coded aperture[J]. Acta Optica Sinica, 2016, 36(4):0411004. (in Chinese)
[37] Kazemzadeh F, Wong A. Resolution-and throughput-enhanced spectroscopy using a high-throughput computational slit[J]. Optics Letters, 2016, 41(18):4352-4355.
[38] Ma X, Wang H, Wang Y, et al. Improving the resolution and the throughput of spectrometers by a digital projection slit[J]. Optics Express, 2017, 25(19):23045-23050.
[39] Yue J, Han J, Zhang Y, et al. High-throughput deconvolution-resolved computational spectrometer[J]. Chinese Optics Letters, 2014, 12(4):043001.
[40] Gehm M E, McCain S T, Pitsianis N P, et al. Static two-dimensional aperture coding for multimodal, multiplex spectroscopy[J]. Applied Optics, 2006, 45(13):2965-2974.
[41] Fernandez C A, Guenther B D, Gehm M E, et al. Longwave infrared (LWIR) coded aperture dispersive spectrometer[J]. Optics Express, 2007, 15(9):5742-5753.
[42] Zhou Y, Rushforth C K. Least-squares reconstruction of spatially limited objects using smoothness and non-negativity constraints[J]. Applied Optics, 1982, 21(7):1249-1252.
[43] Wagadarikar A A, Gehm M E, Brady D J. Performance comparison of aperture codes for multimodal, multiplex spectroscopy[J]. Applied Optics, 2007, 46(22):4932-4942.
[44] Kong Y, Liang J, Wang B, et al. The investigation and simulation of a novel spatially modulated micro-fourier transform spectrometer[J]. Spectroscopy and Spectral Analysis, 2009, 29(4):1142-1146.
[45] Lv J, Liang J, Liang Z. Theoretical analysis on stationary Gaussian random noise in narrowband Fourier transform spectrometer[J]. Acta Physica Sinica, 2012, 61(7):89-96. (in Chinese)
[46] Jin W, Liang J, Liang Z, et al. Development of micro fourier transform spectrometer[J]. Microprocessors, 2017, 38(3):52-59. (in Chinese)
[47] Courtial J, Patterson B A, Harvey A R, et al. Design of a static Fourier-transform spectrometer with increased field of view[J]. Applied Optics, 1996, 35(34):6698-6702.
[48] Zhan G. Static Fourier-transform spectrometer with spherical reflectors[J]. Applied Optics, 2002, 41(3):560-563.
[49] Wang H, Lv J, Liang J, et al. Design and analysis of medium wave infrared miniature atatic Fourier transform spectrometer[J]. Acta Physica Sinica, 2018, 67(6):060702. (in Chinese)
[50] Li W, Lu Q, Song Y, et al. Reflective static fourier spectrometer optical system based on double right-angle beam splitter[J]. Acta Optica Sinica, 2017, 37(8):0812004. (in Chinese)
[51] Li J, Lu D, Qi Z. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution[J]. Acta Physica Sinica, 2014, 64(11):114207. (in Chinese)
[52] Hammaker R M, DeVerse R A, Asunskis D J, et al. Handbook of Vibrational Spectroscopy[M]. New Jersey:John Wiley Sons, Ltd, 2006.
[53] Rose B, Rasmussen M, Herholdt-Rasmussen N, et al. Programmable spectroscopy enabled by DLP[C]//Proceedings of SPIE, 2015, 9376:93760I.
[54] Xu J, Zhu Z, Liu C, et al. The processing method of spectral data in Hadamard transforms spectral imager based on DMD[J]. Optics Communications, 2014, 325:122-128.
[55] Zhang H. Research on key technologies for coded aperture imaging spectrometer based on DMD[D]. Beijing:University of Chinese Academy of Science, 2016. (in Chinese)
[56] Zhang R, Pan M, Yang J, et al. Optical system of echelle spectrometer based on DMD[J]. Optics and Precision Engineering, 2017, 25(12):2994-3000. (in Chinese)
[57] Xu J, Liu Z, Jiang N, et al. Hadamard transform spectral imager of adaptive spectral resolution based on DMD[J]. Spectroscopy and Spectral Analysis, 2013, 33(7):2006-2009. (in Chinese)
[58] Love S P, Graff D L. Full-frame programmable spectral filters based on micromirror arrays[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13(1):011108.
[59] Chi M, Wu Y, Qian F, et al. Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array[J]. Applied Optics, 2017, 56(25):7188-7193.
[60] Wang Z, Yue J, Han J, et al. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction[J]. Applied Physics B, 2017, 123(12):277-284.
[61] Yue J, Han J, Zhang Y, et al. Denoising analysis of Hadamard transform spectrometry[J]. Optics Letters, 2014, 39(13):3744-3747.
[62] Yue J, Han J, Li L, et al. Denoising analysis of spatial pixel multiplex coded spectrometer with Hadamard H-matrix[J]. Optics Communications, 2018, 407:355-360.