[1] Wang L, Ho P P, Liu C, et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr Gate[J]. Science, 1991, 253(5021):769-771.
[2] Anderson G E, Liu F, Alfano R R. Microscope imaging through highly scattering media[J]. Optics Letters, 1994, 19(13):981-983.
[3] Kang S, Jeong S, Choi W, et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 2015, 9(4):253-258.
[4] Guan J, Cheng Y, Chang G. Time-domain polarization difference imaging of objects in turbid water[J]. Optics Communication, 2017, 391:82-87.
[5] Berrocal E, Kristensson E, Richter M, et al. Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays[J]. Optics Express, 2008, 16(22):17870-17881.
[6] Sudarsanam S, Mathew J, Panigrahi S, et al. Real-time imaging through strongly scattering media:seeing through turbid media, instantly[J]. Scientific Reports, 2016, 6:25033.
[7] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181.
[8] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951):73-76.
[9] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12):932-940.
[10] Webb R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 1996, 59:427-471.
[11] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy:imaging molecules to embryos at high spatio temporal resolution[J]. Science, 2014, 346(6208):1257998.
[12] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16):2309-2311.
[13] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2:110-115.
[14] Farrell T J, Patterson M S, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties invivo[J]. Medical Physics, 1992, 19:879-888.
[15] Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods Programs in Biomedicine, 1995, 47:131-146.
[16] Popoff S, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.
[17] Beenakker C W J. Random-matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69:731.
[18] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5):283-292.
[19] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront shaping methods for focusing light into biological tissue[J]. Nature Photonics, 2015, 9(9):563-571.
[20] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9):12189-12206.
[21] Yu H, Park J, Lee K, et al. Recent advances in wavefront shaping techniques for biomedical applications[J]. Current Applied Physics, 2015, 15(5):632-641.
[22] Rotter S, Gigan S. Light fields in complex media:Mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 2017, 89(1):015005.
[23] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 2012, 20(2):1733-1740.
[24] Cui M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011,19(4):2989-2995.
[25] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4):3444-3455.
[26] Hsieh C L, Pu Y, Grange R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 2010, 18(12):12283-12290.
[27] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5(3):154-157.
[28] Wang Y M, Judkewitz B, Dimarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 2012, 3:928.
[29] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 2012, 6(10):657-661.
[30] Cizmr T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging[J]. Nature Communications, 2012, 3:1027.
[31] Papadopoulos I N, Farahi S, Moser C, et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation[J]. Optics Express, 2012, 20(10):10583-10590.
[32] Papadopoulos I N, Farahi S, Moser C, et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber[J]. Biomedical Optics Express, 2013, 4(2):260.
[33] Ci?mr T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 2010, 4(6):388-394.
[34] Van Putten E G, Akbulut D, Bertolotti J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905.
[35] Park J H, Park C, Yu H S, et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 2013, 7(6):454-458.
[36] Park C, Park J H, Rodriguez C, et al. Full-field subwavelength imaging using a scattering superlens[J]. Physical Review Letters, 2014, 113(11):113901.
[37] Van Putten E G, Lagendijk A, Mosk A P. Nonimaging speckle interferometry for high-speed nanometer-scale position detection[J]. Optics Letters, 2012, 37(6):1070-1072.
[38] Horstmeyer R, Judkewitz B, Vellekoop I M, et al. Physical key-protected one-time pad[J]. Scientific Reports, 2013, 3:3543.
[39] Goorden S A, Horstmann M, Mosk A P, et al. Quantum-secure authentication of a physical unclonable key[J]. Optica, 2014, 1(6):421-424.
[40] Akbulut D, Huisman T J, Van Putten E G, et al. Focusing light through random photonic media by binary amplitude modulation[J]. Optics Express, 2011, 19(5):4017-4029.
[41] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 2008, 101(12):120601.
[42] Vellekoop I M, Putten E G V, Lagendijk A, et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1):67-80.
[43] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy:imaging through turbid layers[J]. Optics Letters, 2010, 35(8):1245-1247.
[44] Kong F, Silverman R H, Liu L, et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 2011, 36(11):2053-2055.
[45] Caravaca-Aguirre A M, Conkey D B, Dove J D, et al. High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement[J]. Optics Express, 2013, 21(22):26671-26676.
[46] Lai P, Wang L, Tay J W, et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9(2):126-132.
[47] Bossy E, Gigan S. Photoacoustics with coherent light[J]. Photoacoustics, 2016, 4(1):22-35.
[48] Yu Zhipeng, Li Huanhao, Lai Puxiang. Wavefront shaping and its application to enhance photoacoustic imaging[J]. Applied Science, 2017, 7(12):1320.
[49] Tay J W, Lai P, Suzuki Y, et al. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 2014, 4:3918.
[50] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 2011, 5(6):372-377.
[51] Katz O, Small E, Guan Y, et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 2014, 1(3):170-174.
[52] Fiolka R, Si K, Cui M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light[J]. Optics Express, 2012, 20(15):16532.
[53] Jang J, Lim J, Yu H, et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography[J]. Optics Express, 2013, 21(3):2890-2902.
[54] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nature Communications, 2009, 1(6):81.
[55] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6):870.
[56] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.
[57] Yu H, Hillman T R, Choi W, et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters, 2013, 111(15):153902.
[58] Yoon J, Lee K R, Park J, et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 2015, 23(8):10158.
[59] Lee K R, Park Y K. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 2016, 7:13359.
[60] Yoonseok B, Kyeoreh L, Yongkeun P. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix[J]. Physical Review Applied, 2018, 10(2):024053.
[61] Chaigne T, Katz O, Boccara A C, et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 2013, 8(1):58-64.
[62] Jeong S, Lee Y R, Kang S, et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering[J]. Nature Photonics, 2018, 12:277-283.
[63] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56(4):523.
[64] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 2016, 21(8):085001.
[65] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 2012, 101(8):81108.
[66] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 2010, 18:20723-20731.
[67] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000optical power gain[J]. Scientific Reports, 2015, 5:8896.
[68] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1(4):227-232.
[69] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 2014, 8(12):931-936.
[70] Ruan H, Tom H, Yan L, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 2017, 4(11):1337-1343.
[71] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 2017, 3(12):5520.
[72] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11):3071-3080.
[73] Yu H S, Lee K R, Park Y K. Ultrahigh enhancement of light focusing through disordered media controlled by megapixel modes[J]. Optics Express, 2017, 25(7):8036-8047.
[74] Yan L, Cheng M, Yuecheng S, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 2017, 4(2):280.
[75] Tao X, Bodington D, Reinig M, et al. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing[J]. Optics Express, 2015, 23(11):14168.
[76] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2015, 2(8):728.
[77] Park J H, Yu Z, Lee Kyeo Re, et al, Perspective:Wavefront shaping techniques for controlling multiple light scattering in biological tissues:Toward in vivo applications[J]. APL Photonics, 2018, 3:100901.
[78] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 2013, 7(4):300-305.
[79] Yu Z, Huangfu J, Zhao F, et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 2018, 8(1):2927.
[80] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 2014, 22(12):14054.
[81] Rigden J D, Gordon E I. The granularity of scattered optical maser light[J]. SPIE Milestone Series Ms, 1997, 133:213.
[82] Oliver B M. Sparking spots and random diffraction[J]. Proceedings of the IEEE, 1963, 51(1):220-221.
[83] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11):1145-1149.
[84] Lim J S, Nawab H. Techniques for speckle noise removal[J]. Optical Engineering, 1981, 20(3):472-480.
[85] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 2016, 3(1):71-74.
[86] Bertolotti J. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491:232-234.
[87] Tang W, Yang J, Yi W, et al. Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media[J]. Applied Optics, 2019, 58(4):1033-1039.
[88] Vinu R V, Gaur C, Khare K, et al. Sparsity assisted approach for imaging from laser speckle[C]//Quantitative Phase Imaging Ⅲ. International Society for Optics and Photonics, 2017, 10074:1007409.
[89] Dror I, Sandrov A, Kopeika N S. Experimental investigation of the influence of the relative position of the scattering layer on image quality:the shower curtain effect[J]. Applied Optics, 1998, 37(27):6495-6499.
[90] Li G, Yang W, Li D, et al. Cyphertext-only attack on the double random-phase encryption:Experimental demonstration[J]. Optics Express, 2017, 25(8):8690-8697.
[91] Feng S, Kane C, Lee P A. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 1988, 61(7):834-837.
[92] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20):2328-2331.
[93] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8:784-790.
[94] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3:27-29.
[95] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21:2758-2769.
[96] Wu T, Katz O, Shao X. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41:5003-5006.
[97] Singh A K, Pedrini G, Takedas M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7:10687.
[98] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 2016, 6:33558.
[99] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8:9614.
[100] Mukherjee S, Vijayakumar A, Kumar M, et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 2018, 8:1134.
[101] Shi Y, Liu Y, Wang J, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 2017, 110:231101.
[102] Tang D, Sahoo S K, Tran V, et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing[J]. Applied Optics, 2018, 57(26):7533-7538.
[103] Li G, Yang W, Wang H, et al. Image transmission through scattering media using ptychographic iterative engine[J]. Applied Sciences, 2019, 9(5):849.
[104] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26):33902-33910.
[105] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13):13738-13743.
[106] HorniK K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
[107] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computerassisted Intervention, 2015:234-241.
[108] Lyu M, Wang H, Li G, et al. Learning-base lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3):036002.
[109] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7):803-813.
[110] Li Y, Xue Y, Tian L. Deep speckle correlation:a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10):1181-1190.
[111] Caramazza P, Boccolini A, Buschek D, et al. Neural network identifcation of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 2018, 8:11945.
[112] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 2018, 26(23):30911-30929.