[1] Arnison M R, Larkin K G, Sheppard C J R, et al. Linear phase imaging using differential interference contrast microscopy[J]. Journal of Microscopy, 2004, 214(1):7.
[2] Mertz J. Introduction to Optical Microscopy[M]. Colorado:Roberts, 2010:138.
[3] Zernike F. How I discovered phase contrast[J]. Science, 1955, 121(3141):345-349.
[4] Burch C, Stock J. Phase-contrast microscopy[J]. Journal of Scientific Instruments, 1942, 19(5):71.
[5] Hamilton D, Sheppard C. Differential phase contrast in scanning optical microscopy[J]. Journal of Microscopy, 1984, 133(1):27.
[6] Hamilton D K, Sheppard C J R, Wilson T. Improved imaging of phase gradients in scanning optical microscopy[J]. Journal of Microscopy, 1984, 135(3):275.
[7] Kim Y, Shim H, Kim K, et al. Profiling individual human red blood cells using common-path diffraction optical tomography[J]. Scientific Reports, 2014, 4:6659.
[8] Popescu G. Quantitative phase imaging of nanoscale cell structure and dynamics[J]. Methods in Cell Biology, 2008, 90:87-115.
[9] Mann C J, Yu L, Lo C M, et al. High-resolution quantitative phase-contrast microscopy by digital holography[J]. Optics Express, 2005, 13(22):8693.
[10] Marquet P, Rappaz B, Magistretti P J, et al. Digital holographic microscopy:a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 2005, 30(5):468.
[11] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection[J]. Applied Optics, 2008, 47(4):A52.
[12] Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3):447-449.
[13] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12):14430-14441.
[14] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20):24060-24075.
[15] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18):3538-3541.
[16] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5):5346-5362.
[17] Pfeiffer F, Weitkamp T, Bunk O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4):258.
[18] Mehta S B, Sheppard C J R. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast[J]. Optics Letters, 2009, 34(13):1924.
[19] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739.
[20] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22):4845-4848.
[21] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7):2376-2389.
[22] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18):20724-20744.
[23] Sun J, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations[J]. Scientific Reports, 2017, 7(1):1187.
[24] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9):11394.
[25] Lee D, Ryu S, Kim U, et al. Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging[J]. Biomedical Optics Express, 2015, 6(12):4912.
[26] Lee W, Choi J H, Ryu S, et al. Color-coded LED microscopy for quantitative phase imaging:Implementation and application to sperm motility analysis[J]. Methods, 2018, 136:66-74.
[27] Fan Y, Sun J, Chen Q, et al. Wide-field anti-aliased quantitative differential phase contrast microscopy[J]. Optics Express, 2018, 26(19):25129.
[28] Lee W, Jung D, Ryu S, et al. Single-exposure quantitative phase imaging in color-coded LED microscopy[J]. Optics Express, 2017, 25(7):8398.
[29] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[C]//SPIE, 2016, 9718:971826.
[30] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5):1326.
[31] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by using a simple LED array[J]. Optics Letters, 2011, 36(20):3987.
[32] Zuo C, Sun J, Feng S, et al. Programmable Colored Illumination Microscopy (PCIM):A practical and flexible optical staining approach for microscopic contrast enhancement[J]. Optics and Lasers in Engineering, 2016, 78:35-47.
[33] Iglesias I. Pyramid phase microscopy[J]. Optics Letters, 2011, 36(18):3636.
[34] Zuo C, Sun J, Feng S, et al. Programmable aperture microscopy:A computational method for multi-modal phase contrast and light field imaging[J]. Optics and Lasers in Engineering, 2016, 80:24-31.
[35] Parthasarathy A B, Chu K K, Ford T N, et al. Quantitative phase imaging using a partitioned detection aperture[J]. Optics Letters, 2012, 37(19):4062.
[36] Barankov R, Mertz J. Single-exposure surface profilometry using partitioned aperture wavefront imaging[J]. Optics Letters, 2013, 38(19):3961.
[37] Iglesias I, Vargas-Martin F. Quantitative phase microscopy of transparent samples using a liquid crystal display[J]. Journal of Biomedical Optics, 2013, 18(2):026015.
[38] Lu H, Chung J, Ou X, et al. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast[J]. Optics Express, 2016, 24(22):25345.
[39] Ford T N, Chu K K, Mertz J. Phase-gradient microscopy in thick tissue with oblique back-illumination[J]. Nature Methods, 2012, 9(12):1195-1197.
[40] Ford T N, Mertz J. Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy[J]. Journal of Biomedical Optics, 2013, 18(6):066007.
[41] Jung D, Choi J H, Kim S, et al. Smartphone-based multi-contrast microscope using color-multiplexed illumination[J]. Scientific Reports, 2017, 7(1).
[42] Rose H. Nonstandard imaging methods in electron microscopy[J]. Ultramicroscopy, 1976, 2:251.
[43] Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging[M]. Florida:CRC Press, 1998.
[44] Lin Y Z, Huang K Y, Luo Y. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination[J]. Optics Letters, 2018, 43(12):2973-2976.
[45] Chen H H, Lin Y Z, Luo Y. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging[J]. Journal of Biophotonics, 2018, 11(8):e201700364.
[46] Fan Y, Sun J, Chen Q, et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. arXiv preprint arXiv, 2019:1903.10718.
[47] Li J, Chen Q, Sun J, et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy[J]. Optics Express, 2018, 26(21):27599-27614.
[48] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1):7654.
[49] Kellman M, Bostan E, Repina N, et al. Physics-based learned design:optimized coded-Illumination for quantitative phase imaging[J]. IEEE Transactions on Computational Imaging, 2019:1.
[50] Chen M, Phillips Z F, Waller L. Quantitative differential phase contrast (DPC) microscopy with computational aberration correction[J]. Optics Express, 2018, 26(25):32888.
[51] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14):15765.
[52] Kellman M, Chen M, Phillips Z F, et al. Motion-resolved quantitative phase imaging[J]. Biomedical Optics Express, 2018, 9(11):5456.
[53] Phillips Z F, Chen M, Waller L. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)[J]. PLOS ONE, 2017, 12(2):e0171228.
[54] Tian L, Liu Z, Yeh L H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10):904.
[55] Sun J, Chen Q, Zhang J, et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J]. Optics Letters, 2018, 43(14):3365.
[56] Majeed H, Sridharan S, Mir M, et al. Quantitative phase imaging for medical diagnosis[J]. Journal of Biophotonics, 2017, 10(2):177-205.
[57] Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1):71-94.
[58] Sheppard C, Shotton D, Sheppard C. Confocal Laser Scanning Microscopy[M]. Oxford:BIOS Scientific Publishers Ltd, 1997.
[59] Zipfel W R, Williams R M, Webb W W. Nonlinear magic:multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 2003, 21(11):1369.
[60] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2):104.
[61] Zuo C, Sun J, Li J, et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. arXiv preprint arXiv, 2019:1904.09386.
[62] Horstmeyer R, Chung J, Ou X, et al. Diffraction tomography with Fourier ptychography[J]. Optica, 2016, 3(8):827.
[63] Sung Y, Choi W, Fang-Yen C, et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 2009, 17(1):266.