[1] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Phys Rev B, 1998, 58(11):6779-6782.
[2] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668):667-669.
[3] Salomon L, Grillot F, Zayats A V, et al. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film[J]. Phys Rev Lett, 2001, 86(6):1110-1113.
[4] Martin-moreno L, Garcia-vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Phys Rev Lett, 2001, 86(6):1114-1117.
[5] Lezec H, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Opt Express, 2004, 12(16):3629-3651.
[6] Gay G, Alloschery O, Viaris De Lesegno B V, et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model[J]. Nat Phys, 2006, 2(4):262-267.
[7] Liu H T, Lalanne P. Light scattering by metallic surfaces with subwavelength patterns[J]. Phys Rev B, 2010, 82(11):115418.
[8] Liu H T, Lalanne P. Comprehensive microscopic model of the extraordinary optical transmission[J]. JOSAA, 2010, 27(12):2542-2550.
[9] Sobnack M B, Tan W C, Wanstall N P, et al. Stationary surface plasmons on a zero-order metal grating[J]. Phys Rev Lett, 1998, 80(25):5667-5670.
[10] Astilean S, Lalanne Ph, Palamaru M. Light transmission through metallic channels much smaller than the wavelength[J]. Opt Commun, 2000, 175(4):265-273.
[11] Van Der Molen K L, Klein Koerkamp K J, Enoch S, et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes:Experiment and theory[J]. Phys Rev B, 2005, 72:045421.
[12] Ruan Z C, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances[J]. Phys Rev Lett,2006, 96:233901.
[13] Wang Ang, Dan Yaping. Mid-infrared plasmonic multispectral filters[J]. Sci Rep, 2018, 8:11257.
[14] Yuan J, Xie Y, Geng Z, et al. Enhanced sensitivity of gold elliptic nanohole array biosensor with the surface plasmon polaritons coupling[J]. Opt Mater Express,2015, 5(4):818-826.
[15] Li Chenlong, Feng Lishuang, Zhou Zhen, et al. Optical-control terahertz modulator based on subwavelength metallic hole arrays[J]. Infrared and Laser Engineering, 2014, 43(12):4013-4016.
[16] Qi Yunping, Zhang Xuewei, Hu Yue, et al. Broadband extraordinary optical transmission through tapered metallic slits array embedded with rectangular cavities[J]. Infrared and Laser Engineering, 2018, 47(S1):S107001. (in Chinese)
[17] Miao Sun, Mohammad Taha, Sumeet Walia, et al. A photonic switch based on a hybrid combination of metallic nanoholes and phase-change vanadium Dioxide[J]. Sci Rep, 2018, 8:11106.
[18] Liu Jing, Liu Juan, Wang Yongtian, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics, 2011, 4(4):1674-2915. (in Chinese)
[19] Xiang D, Wang L L, Zhai X, et al. Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits[J]. Opt Commun,2011, 284(1):471-475.
[20] Qu Y, Tian X J, Fu T, et al. Broadband extraordinary optical transmission through a multilayer structure with a periodic nanoslit array[J]. IEEE Photonics Journal,2015, 7(3):1-8.
[21] Nie Junying, Zhang Wan, Luo Lina, et al. Extraordinary optical transmission properties of multilayer metallic slit arrays.[J]. Scientia Sinica Physica, Mechanica Astronomica, 2015, 45(2):024202.
[22] Ye Y H, Zhang J Y. Enhanced light transmission through cascaded metal films perforated with periodic hole arrays[J]. Opt Lett, 2005, 30(12):1521-1523.
[23] He M D, Wang L L, Liu J Q, et al. Controllable light transmission through cascaded metal films perforated with periodic hole arrays[J]. Appl Phys Lett, 2008, 93(22):221909.
[24] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics Astronomy, 2015, 58(9):594201.