[1] Guo Ruhai, Chen Ning, Shi Kui, et al. Simulations and experiments on optical inner-channel thermal deformation for high-power laser system[J]. Infrared and Laser Engineering, 2013, 42(11):2925-2930. (in Chinese)郭汝海, 陈宁, 时魁, 等. 高功率激光系统中内光路热变形的仿真及实验研究[J]. 红外与激光工程, 2013, 42(11):2925-2930.
[2] Lv Baida, Kang Xiaoping. Some aspects of laser beam quality[J]. Infrared and Laser Engineering, 2007, 36(1):47-51. (in Chinese)吕百达, 康小平. 对激光光束质量一些问题的认识[J]. 红外与激光工程, 2007, 36(1):47-51.
[3] Guo Jianzeng, Liu Tiegen, Wang Zhenhua, et al. Method for lower order aberration correction based on beam shaping[J]. High Power Laser and Particle Beams, 2012, 24(8):1797-1800. (in Chinese)郭建增, 刘铁根, 王振华, 等. 基于整形光路的低阶像差校正方法[J]. 强激光与粒子束, 2012, 24(8):1797-1800.
[4] Zhao Haitao, Wang Zhenhua, Wei Chengpu, et al. Detection of defocus length based on optical modulator[J]. High Power Laser and Particle Beams, 2010, 22(8):1839-1842. (in Chinese)赵海涛, 王振华, 韦承甫, 等. 基于光学调制的离焦探测技术[J]. 强激光与粒子束, 2010, 22(8):1839-1842.
[5] Zhang Zhongping, Zhang Haifeng, Deng Huarong, et al. Experiment of laser ranging to space debris by using two receiving telescopes[J]. Infrared and Laser Engineering, 2016, 45(1):0102002. (in Chinese)张忠萍, 张海峰, 邓华荣, 等. 双望远镜的空间碎片激光测距试验研究[J]. 红外与激光工程, 2016, 45(1):0102002.
[6] Gao Duorui, Li Tianlun, Sun Yue, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6):901-913. (in Chinese)高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势[J]. 中国光学, 2018, 11(6):901-913.
[7] Wen Ya, Wu Chunting, Yuan Zerui, et al. Research progress of far-infrared solid-state lasers[J]. Chinese Optics, 2018, 11(6):889-900. (in Chinese)温雅, 吴春婷, 袁泽锐, 等. 远红外固体激光器研究进展[J]. 中国光学, 2018, 11(6):889-900.
[8] Chen Minghui, Jia Wenyu, He Jintao, et al. Development of swept source based on dual filtering[J]. Optics and Precision Engineering, 2018, 26(10):2355-2362. (in Chinese)陈明惠, 贾文宇, 何锦涛, 等. 双重滤波扫频光源的研制[J]. 光学精密工程, 2018, 26(10):2355-2362.
[9] Yang Juqing, Wang Dayong, Dong Dengfeng, et al. Laser measurement based evaluation for orthogonal transformation calibration of robot pose[J]. Optics and Precision Engineering, 2018, 26(8):1985-1993. (in Chinese)杨聚庆, 王大勇, 董登峰, 等. 激光测量标定机器人坐标系位姿变换的正交化解算[J]. 光学精密工程, 2018, 26(8):1985-1993.
[10] Zhou Renzhong, Yan Jixiang, Yu Xin, et al. Adaptive Optics[M]. Beijing:National Defense Industry Press, 1996:1-5. (in Chinese)周仁忠, 阎吉祥, 俞信, 等. 自适应光学[M]. 北京:国防工业出版社, 1996:1-5.
[11] Mukai R, Wilson K, Vilnrotter V. Application of genetic and gradient descent algorithms to wave-front compensation for the deep-space optical communications receiver[R]. The Interplanetary Network Progress Report 42-161, 2005.
[12] Xi F J, Jiang Z F, Xu X J, et al. High-diffractive-efficiency defocus grating for wavefront curvature sensing[J]. Journal of the Optical Society of America A, 2007, 24(11):3444-3448.
[13] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 1977, 67(3):360-369.
[14] Roddier F. Curvature sensing and compensation:a new concept in adaptive optics[J]. Applied Optics, 1988, 27:1223-1225.
[15] Zhou Bingkun, Gao Yizhi, Chen Tirong, et al. Principle of Laser[M]. 6th ed. Beijing:National Defense Industry Press, 2010:70-72. (in Chinese)周炳琨, 高以智, 陈倜嵘, 等. 激光原理[M]. 第6版. 北京:国防工业出版社, 2010:70-72.