[1] Sun J, Zhou Y. Short pulselength direct-detect laser reflective tomography imaging ladar:field results[C]//SPIE NanoScience+Engineering. International Society for Optics and Photonics, 2010, 7419:74190W.
[2] Hu Yihua. Laser imaging technology for space target precise reconnaissance[J]. National Defense Science Technology, 2016, 37(1):30-36. (in Chinese)胡以华. 空间激光成像目标精确侦察技术[J]. 国防科技, 2016, 37(1):30-36.
[3] Lin F, Wang J C, Lei W H, et al. Detection of barycenter of planar target based on laser reflective tomography[J]. Optics Communications, 2017, 402:540-544.
[4] Chen V C, Ling H. Time-frequency transforms for radar imaging and signal analysis[D]. Boston MA:Artech House Inc, 2001.
[5] Li Y, Wu Z. Targets recognition using subnanosecond pulse laser range profiles[J]. Optics Express, 2010, 18(16):16788-16796.
[6] Steinvall O, Chevalier T. Range accuracy and resolution for laser radars[C]//SPIE, 2005, 5988:73-88.
[7] Steinvall O K, Carlsson T. Three-dimensional laser radar modeling[C]//SPIE, 2001, 4377:23-34.
[8] Steinvall O, Elmqvist M, Chevalier T, et al. Measurement and modeling of laser range profiling of small maritime targets[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI. International Society for Optics and Photonics, 2012, 8542:85420I.
[9] Berginc G. Scattering models for 1-D-2-D-3-D laser imagery[J]. Optical Engineering, 2016, 56(3):031207.
[10] Li Y, Wu Z, Gong Y. Laser range profile of the sphere[C]//Photonics Asia, 2010:078501J.
[11] Li Y, Wu Z, Gong Y. Ultra-short pulse laser one-dimensional range profile of a cone[J]. Nuclear Inst Methods in Physics Research A, 2011, 637(1):S149-S152.
[12] Gong Y, Li Y, Wu Z, et al. Analytical model of a laser range profile from rough convex quadric bodies of revolution[J]. J Opt Soc Am A Opt Image Sci Vis, 2012, 29(7):1383-1388.
[13] Chen Jianbiao, Sun Huayan, Zhao Yanzhong. Simulation and experimental research on one dimensional lidar range profile of airborne target[J]. Laser Optoelectronics Progress, 2017, 54(7):318-325.
[14] Steinvall O, Sjqvist L, Henriksson M, et al. High resolution ladar using time-correlated single-photon counting[C]//SPIE, 2008, 6950:695002.
[15] Sjqvist L, Henriksson M, Jonsson P, et al. Time-of-flight range profiling using time-correlated single-photon counting[C]//Technologies for Optical Countermeasures IV. International Society for Optics and Photonics, 2007, 6738:67380N.
[16] Steinvall O, Chevalier T, Grnwall C. Simulating the performance of laser imaging and range profiling of small surface vessels[C]//SPIE Defense, Security, and Sensing, 2013, 8731:87310U.
[17] Steinvall O, Tulldahl M. Laser range profiling for small target recognition[C]//SPIE Defense+Security, 2016, 9832:98320E.
[18] Jonsson P, Hedborg J, Henriksson M, et al. Reconstruction of time-correlated single-photon counting range profiles of moving objects[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications IX. International Society for Optics and Photonics, 2015, 9649:964905.
[19] Sjqvist L, Allard L, Henriksson M, et al. Target discrimination strategies in optics detection[C]//SPIE Security+Defence. International Society for Optics and Photonics, 2013, 8898:8898K.
[20] Heuvel J C V D, Pace P, Bekman H H P T, et al. Experimental validation of ship identification with a laser range profiler[C]//SPIE, 2008, 6950:23.
[21] Van den Heuvel J C, Bekman H H P T, van Putten F J M, et al. Search-lidar demonstrator for detection of small sea-surface targets[C]//Laser Radar Technology and Applications XⅢ. International Society for Optics and Photonics, 2008, 6950:69500W.
[22] Van den Heuvel J C, Schoemaker R M, Schleijpen R H M A. Identification of air and sea-surface targets with a laser range profiler[C]//Laser Radar Technology and Applications XIV. International Society for Optics and Photonics, 2009, 7323:73230Y.
[23] Peterson R D, Schepler K L. Timing modulation of a 40-MHz laser-pulse train for target ranging and identification[J]. Applied Optics, 2003, 42(36):7191.
[24] Ren M, Gu X, Liang Y, et al. Laser ranging at 1550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector[J]. Optics Express, 2011, 19(14):13497-13502.
[25] Wallace A M, Sung R C W, Buller G S, et al. Detecting and characterising returns in a pulsed ladar system[J]. Vision, Image and Signal Processing, IEE Proceedings, 2006, 153(2):160-172.
[26] Wallace A M, Buller G S, Sung R C W, et al. Multi-spectral laser detection and ranging for range profiling and surface characterization[J]. Journal of Optics A Pure Applied Optics, 2005, 7(6):S438.
[27] Warburton R E, Mccarthy A, Wallace A M, et al. Enhanced performance photon-counting time-of-flight sensor[J]. Optics Express, 2007, 15(2):423-429.
[28] Mou Y, Wu Z S, Li Z J, et al. Geometric detection based on one-dimensional laser range profiles of dynamic conical target[J]. Applied Optics, 2014, 53(35):8335-8341.
[29] Knight F K, Klick D, Ryan-Howard D P, et al. Laser radar reflective tomography utilizing a streak camera for precise range resolution[J]. Applied Optics, 1989, 28(12):2196-2198.
[30] Parker J K, Craig E B, Klick D I, et al. Reflective tomography:images from range-resolved laser radar measurements[J]. Applied Optics, 1988, 27(13):2642-2643.
[31] Knight F K, Kulkarni S R, Marino R M, et al. Tomographic techniques applied to laser radar reflective measurements[J]. Lincoln Laboratory Journal, 1989, 2(2):143-160.
[32] Matson C L, Magee E P, Holland D E. Reflective tomography using a short-pulselength laser:system analysis for artificial satellite imaging[J]. Optical Engineering, 1995, 34(9):2811-2820.
[33] Magee E P, Matson C L, Stone D. Comparison of techniques for image reconstruction using reflective tomography[C]//Image Reconstruction and Restoration. International Society for Optics and Photonics, 1994, 2302:95-103.
[34] Henriksson M, Olofsson T, Grnwall C, et al. Optical reflectance tomography using TCSPC laser radar[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI. International Society for Optics and Photonics, 2012, 8542:85420E.
[35] Murray J T, Triscari J, Fetzer G, et al. Tomographic lidar[C]//Applications of Lasers for Sensing and Free Space Communications. Optical Society of America, 2010:LSWA1.
[36] Qu Fuqi, Hu Yihua, Jiao Junjun, et al. Satellite-to-satellite lidar imaging using reflective tomography[J]. Acta Photonica Sinica, 2013, 42(1):48-53. (in Chinese)
[37] Jin X, Sun J, Yan Y, et al. Imaging resolution analysis in limited-view Laser Radar reflective tomography[J]. Optics Communications, 2012, 285(10-11):2575-2579.
[38] Ford S D, Matson C L. Projection registration in reflective tomography[C]//Digital Image Recovery and Synthesis IV. International Society for Optics and Photonics, 1999, 3815:189-199.
[39] Jin X, Sun J, Yan Y, et al. Feature tracking for projection registration in laboratory-scale reflective tomography laser radar imaging[J]. Optics Communications, 2010, 283(18):3475-3480.
[40] Jin X, Sun J, Yan Y, et al. Application of phase retrieval algorithm in reflective tomography laser radar imaging[J]. Chinese Optics Letters, 2011, 9(1):012801.
[41] Gu Yu, Hu Yihua, Hao Shiqi, et al. Study on influence of filter back-projection on laser reflective tomography[J]. Laser Infrared, 2015, 45(12):1500-1504. (in Chinese)
[42] Gu Yu, Hu Yihua, Hao Shiqi, et al. Application of variational Bayesian deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 2016, 36(6):0611003. (in Chinese)
[43] Wang J C, Zhou S W, Shi L, et al. Image quality analysis and improvement of Ladar reflective tomography for space object recognition[J]. Optics Communications, 2016, 359:177-183.
[44] Lin Fang, Wang Jincheng, Zhang Hua, et al. Application of multi-frame iterative blind deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 2017, 37(9):0911001.
[45] Lasche J B, Hanes S A, Rowland K B, et al. Imaging with heterodyne laser radar and reflection tomography[C]//High-Resolution Wavefront Control:Methods, Devices, and Applications Ⅱ. International Society for Optics and Photonics, 2000, 4124:275-286.
[46] Matson C L, Mosley D E. Reflective tomography reconstruction of satellite features-field results[J]. Applied Optics, 2001, 40(14):2290-2296.