[1] Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography-principles and applications[J]. Rep Prog Phys, 2003, 66:239-303.
[2] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254:1178-1181.
[3] Leitgeb R A, Werkmeister R M, Blatter C, et al. Doppler optical coherence tomography[J]. Prog Retin Eye Res, 2014, 41:26-43.
[4] Drexler W, Fujimoto J G. Optical Coherence Tomography:Technology and Applications[M]. Berlin:Springer, 2008:621-651.
[5] Srinivasan V J, Sakad?i? S, Gorczynska I, et al. Quantitative cerebral blood flow with optical coherence tomography[J]. Opt Express, 2010, 18:2477-2494.
[6] Kashani A H, Chen C L, Gahm J K, et al. Optical coherence tomography angiography:A comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 2017, 60:66-100.
[7] Carlo T E, Romano A, Waheed N K, et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 2015, 1:5.
[8] Baran U, Wang R K. Review of optical coherence tomography based angiography in neuroscience[J]. Neurophotonics, 2016, 3:010902.
[9] Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography 2013; a review[Invited] [J]. Biomed Opt Express, 2017, 8:1838-1873.
[10] Baumann B. Polarization sensitive optical coherence tomography:A review of technology and applications[J]. Applied Sciences, 2017, 7:474.
[11] Siddiqui M, Nam A S, Tozburun S, et al. High-speed optical coherence tomography by circular interferometric ranging[J]. Nature Photonics, 2018, 12:111-116.
[12] Shu X, Beckmann L J, Zhang H F. Visible-light optical coherence tomography:a review[J]. Journal of Biomedical Optics, 2017, 22:121707.
[13] Povazay B, Apolonski A A, Unterhuber A, et al. Visible light optical coherence tomography[C]//Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, International Society for Optics and Photonics, 2002, 4619:90-94.
[14] Yi J, Chen S, Shu X, et al. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy[J]. Biomed Opt Express, 2015, 6:3701-3713.
[15] Kho A, Srinivasan V J. Compensating spatially dependent dispersion in visible light OCT[J]. Opt Lett, 2019, 44:775-778.
[16] Zhang T, Kho A M, Srinivasan V J. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking[J]. Biomed Opt Express, 2019, 10:2918-2931.
[17] Ju M J, Huang C, Wahl D J, et al. Visible light sensorless adaptive optics for retinal structure and fluorescence imaging[J]. Opt Lett, 2018, 43:5162-5165.
[18] Coquoz S, Marchand P J, Bouwens A, et al. Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy[J]. PLOS ONE, 2017, 12:e0181676.
[19] Marchand P J, Szlag D, Bouwens A, et al. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range[J]. Journal of Biomedical Optics, 2018, 23:036012.
[20] Merkle C W. Chong S P, Kho A M, et al. Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo[J]. Opt Lett, 2018, 43:198-201.
[21] Marchand P J, Bouwens A, Szlag D, et al. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography[J]. Biomed Opt Express, 2017, 8:3343-3359.
[22] Pi S, Camino A, Wei X, et al. Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography[J]. Biomed Opt Express, 2018, 9:5851-5862.
[23] Chen S, Yi J, Liu W, et al. Monte Carlo investigation of optical coherence tomography retinal oximetry[J]. IEEE Transactions on Biomedical Engineering, 2015, 62:2308-2315.
[24] Yi J, Wei Q, Liu W, et al. Visible-light optical coherence tomography for retinal oximetry[J]. Opt Lett, 2013, 38:1796-1798.
[25] Yi J, Backman V. Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography[J]. Opt Lett, 2012, 37:4443-4445.
[26] Faber D J, Aalders M C G, Mik E G, et al. Oxygen saturation-dependent absorption and scattering of blood[J]. Phys Rev Lett, 2004, 93:028102.
[27] Leitgeb R, Wojtkowski M, Kowalczyk A, et al. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography[J]. Opt Lett, 2000, 25:820-822.
[28] Morgner U, Drexler W, Krtner F X, et al. Spectroscopic optical coherence tomography[J]. Opt Lett, 2000, 25:111-113.
[29] Yi J, Li X. Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography[J]. Opt Lett, 2010, 35:2094-2096.
[30] Robles F E, Chowdhury S, Wax A. Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics[J]. Biomed Opt Express, 2010, 1:310-317.
[31] Robles F E, Wilson C, Grant G, et al. Molecular imaging true-colour spectroscopic optical coherence tomography[J]. Nature Photonics, 2011, 5:744-747.
[32] Yi J, Liu W, Chen S, et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J]. Light:Science Applications, 2015, 4:e334.
[33] Chong S P, Merkle C W, Leahy C, et al. Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT[J]. Biomed Opt Express, 2015, 6:3941-3951.
[34] Yi J, Chen S, Backman V, et al. In vivo functional microangiography by visible-light optical coherence tomography[J]. Biomed Opt Express, 2014, 5:3603-3612.
[35] Chen S, Yi J, Zhang H F. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography[J]. Biomed Opt Express, 2015, 6:2840-2853.
[36] Liu R, Song W, Backman V, et al. Quantitative quality-control metrics for in vivo oximetry in small vessels by visible light optical coherence tomography angiography[J]. Biomed Opt Express, 2019, 10:465-486.
[37] Liu R, Winkelmann J A, Spicer G, et al. Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography[J]. Light:ScienceApplications, 2018, 7:1-13.
[38] Liu W, Wang S, Soetikno B, et al. Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice[J]. Invest Ophthalmol Vis Sci, 2017, 58:981-989.
[39] Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model|Scientific Reports. https://www.nature.com/articles/srep16752.
[40] Song W, Fu S, Song S, et al. Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model[J]. Neurophotonics, 2019, 6:041103.
[41] Pi S, Hormel T T, Wei X, et al. Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography[J]. Neurophotonics, 2019, 6:041104.
[42] Soetikno B T, Shu X, Liu Q, et al. Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation[J].Biomed Opt Express, 2017, 8:3571-3582.
[43] Chen S, Liu Q, Shu X, et al. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography[J]. Biomed Opt Express, 2016, 7:3377-3389.
[44] Chen S, Shu X, Nesper P L, et al. Retinal oximetry in humans using visible-light optical coherence tomography[Invited] [J]. Biomed Opt Express, 2017, 8:1415-1429.
[45] Boustany N N, Boppart S A, Backman V. Microscopic imaging and spectroscopy with scattered light[J]. Annual Review of Biomedical Engineering, 2010, 12:285-314.
[46] Barer R, Tkaczyk S. Refractive index of concentrated protein solutions[J]. Nature, 1954, 173:821-822.
[47] Yi J, Radosevich A J, Rogers J D, et al. Can OCT be sensitive to nanoscale structural alterations in biological tissue[J]. Opt Express, 2013, 21:9043-9059.
[48] Cherkezyan L, Capoglu I, Subramanian H, et al. Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations[J]. Phys Rev Lett, 2013, 111:033903.
[49] Radosevich A J, Yi J, Rogers J D, et al. Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation[J]. Opt Lett, 2012, 37:5220-5222.
[50] Hunter M, Backman V, Popescu G, et al. Tissue self-affinity and polarized light scattering in the born approximation:A new model for precancer detection[J]. Phys Rev Lett, 2006, 97:138102.
[51] Terry N G, Zhu Y, Rinehart M T, et al. Detection of dysplasia in Barrett's ssophagus with in vivo depth-resolved nuclear morphology measurements[J]. Gastroenterology, 2011, 140:42-50.
[52] Qiu L, Pleskow D K, Chuttani R, et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus[J]. Nature Medicine, 2010, 16:603-606.
[53] Mirabal Y N, Chang S K, Atkinson E N, et al. Reflectance spectroscopy for in vivo detection of cervical precancer[J]. Journal of Biomedical Optics, 2002, 7:587-595.
[54] Canpolat M, Akman-Karakas A, Gkhan-Ocak G A, et al. Diagnosis and demarcation of skin malignancy using elastic light single-scattering spectroscopy:A pilot study[J]. Dermatologic Surgery, 2012, 38:215-223.
[55] Lichtenegger A, Harper J D, Augustin M, et al. Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer x02019; s disease brain samples[J]. Biomed Opt Express, 2017, 8:4007-4025.
[56] Harper D J, Konegger T, Augustin M, et al. Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal pigment epithelium[J]. J Biophotonics, 2019:e201900153.
[57] Harper D J, Augustin M, Lichtenegger A, et al. White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina[J]. Biomed Opt Express, 2018, 9:2115-2129.
[58] Zhang X, Hu J, Knighton R W, et al. Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer[J]. Opt Express, 2011,19:19653-19659.
[59] Chen S, Shu X, Yi J, et al. Dual-band optical coherence tomography using a single supercontinuum laser source[J]. Journal of Biomedical Optics, 2016, 21:066013.
[60] Song W, Zhou L, Zhang S, et al. Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina[J]. Biomed Opt Express, 2018, 9:3464-3480.
[61] Song W, Zhang L, Ness S, et al. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium and their changes with melanin bleaching:a numerical study[J]. Biomed Opt Express, 2017, 8:3966-3980.