[1] Spirit D M, Ellis A D, Barnsley P E. Optical time division multiplexing: systems and networks [J]. IEEE Communications Magazine, 1994, 32(12): 56-62. doi:  10.1109/35.336012
[2] Mukherjee B. WDM optical communication networks: progress and challenges [J]. IEEE Journal on Selected Areas in Communications, 2000, 18(10): 1810-1824. doi:  10.1109/49.887904
[3] Essiambre R, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks [J]. Journal of Lightwave Technology, 2010, 28(4): 662-701. doi:  10.1109/JLT.2009.2039464
[4] Li S, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing [J]. IEEE Photonics Journal, 2013, 5(5): 7101007. doi:  10.1109/JPHOT.2013.2272778
[5] Liu Jun, Wang Jian. Research progress of optical signal processing with orbital angular moment [J]. Journal on Communications, 2021, 42(11): 217-232. (in Chinese)
[6] Guo Zhongyi, Pan Zhenzhen, Gong Chaofan, et al. Research on router device of OAM optical communication [J]. Journal on Communications, 2020, 41(11): 185-197. (in Chinese)
[7] Zheng Wei, Zhang Di, Yuan Hao, et al. High capacity optical information encryption technology based on OAM holography and frequency shift [J]. Infrared and Laser Engineering, 2023, 52(7): 20230313. (in Chinese)
[8] Hu Z, Zhang X, Hui L, et al. The orbital angular momentum modes supporting fibers based on the photonic crystal fiber structure [J]. Crystals, 2017, 7(10): 286-286. doi:  10.3390/cryst7100286
[9] Kim M, Kim S. Epsilon-near-zero photonic crystal fibers for a large mode separation of orbital angular momentum modes [J]. Optik, 2020, 204: 164209. doi:  10.1016/j.ijleo.2020.164209
[10] Russell P. Photonic crystal fibers [J]. Science, 2003, 299(5605): 358-362. doi:  10.1126/science.1079280
[11] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber [J]. Reviews of Modern Physics, 2006, 78(4): 1135. doi:  10.1103/RevModPhys.78.1135
[12] Zhang H, Zhang X, Li H, et al. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission [J]. Optics Communications, 2017, 397: 59-66. doi:  10.1016/j.optcom.2017.03.075
[13] Bai X, Chen H, Yang H, et al. Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission [J]. Optik, 2018, 158: 1266-1274. doi:  10.1016/j.ijleo.2018.01.015
[14] Wang W, Wang N, Li K, et al. A novel dual guided modes regions photonic crystal fiber with low crosstalk supporting 56 OAM modes and 4 LP modes [J]. Optical Fiber Technology, 2020, 57: 1002213.
[15] 赵丽娟, 尹丽星, 徐志钮. 基于布里渊动态光栅的横向压力传感器设计 [J]. 红外与激光工程, 2023, 52(11): 256-264.

Zhao Lijuan, Yin Lixing, Xu Zhiniu. Design of transverse pressure sensor based on Brillouin dynamic grating [J]. Infrared and Laser Engineering, 2023, 52(11): 20230137. (in Chinese)
[16] Li C, Yan B, Liu J. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance [J]. Journal of the Optical Society of America A, 2019, 36(10): 1663. doi:  10.1364/JOSAA.36.001663
[17] Pakarzadeh H, Sharif V. Control of orbital angular momentum of light in optofluidic infiltrated circular photonic crystal fibers [J]. Optics Communications, 2019, 438: 18-24. doi:  10.1016/j.optcom.2019.01.007
[18] Rodenburg B, Lavery M, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum [J]. Optics Letters, 2012, 37(17): 3735-3737. doi:  10.1364/OL.37.003735
[19] Liu Q, Tai S, Lu W, et al. Design of pure silica-based photonic crystal fiber for supporting 114 OAM modes transmission [J]. Journal of Optics, 2021, 23(9): 095701. doi:  10.1088/2040-8986/ac1905
[20] Liu E, Liang S, Liu J. Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber [J]. Superlattices and Microstructures, 2019, 130: 61-67. doi:  10.1016/j.spmi.2019.03.011
[21] Wang Guanjun, Tan Xuxiang, Wang Zhibin. Nonlinearity of dispersion characteristics of nano-core fiber based on selective filling method [J]. Acta Photonica Sinica, 2015, 44(5): 100-105. (in Chinese)
[22] Exian L, Wei T, Bei Y, et al. Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber [J]. Journal of the Optical Society of America A, 2018, 35(3): 431-436. doi:  10.1364/JOSAA.35.000431
[23] Zhao L, Zhao H, Xu Z, et al. A design of novel photonic crystal fiber with low and flattened dispersion for supporting 84 orbital angular momentum modes [J]. Communications in Theoretical Physics, 2021, 73(8): 085501. doi:  10.1088/1572-9494/ac01db
[24] Baek J H, Song D S, Hwang I K, et al. Transverse mode control by etch-depth tuning in 1120-nm GaInAs/GaAs photonic crystal vertical-cavity surface-emitting lasers [J]. Optics Express, 2004, 12(5): 859-867. doi:  10.1364/OPEX.12.000859
[25] Ei Hamzaoui H, Ouerdane Y, Bigot L, et al. Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter [J]. Optics Express, 2012, 20(28): 29751-29760. doi:  10.1364/OE.20.029751
[26] Lorenc D, Aranvosiova M, Buczynski R, et al. Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers [J]. Applied Physics B, 2008, 93(2-3): 531-538. doi:  10.1007/s00340-008-3217-x
[27] Xian F, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers [J]. Journal of Lightwave Technology, 2005, 23(6): 2046-2054. doi:  10.1109/JLT.2005.849945
[28] Ma M, Lian Y. Numerical analysis of a photonic crystal fiber with elliptical air hole for supporting 80 orbital angular momentum modes [J]. Optical Fiber Technology, 2022, 72: 102986. doi:  10.1016/j.yofte.2022.102986
[29] Kabir MA, Hassan M M, Hossain M N, et al. Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission [J]. Optics Communications, 2020, 467: 125731. doi:  10.1016/j.optcom.2020.125731
[30] Rjeb A, Fateallah H, Chebaane S, et al. Design of novel circular lattice photonic crystal fiber suitable for transporting 48 OAM modes [J]. Optoelectronics Letters, 2021, 17(8): 501-506. doi:  10.1007/s11801-021-0158-7
[31] Zhang L, Meng Y. Design and analysis of a photonic crystal fiber supporting stable transmission of 30 OAM modes [J]. Optical Fiber Technology, 2021, 61(15): 102423.
[32] Kabir M A, Ahmed K, Hassan M M, et al. Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication [J]. Optics Communications, 2020, 475: 126192. doi:  10.1016/j.optcom.2020.126192