[1] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces:a review of fundamentals and applications[J]. Reports On Progress in Physics, 2018, 81(2):26401.
[2] Hsiao H, Cheng H, Tsai D. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4):1600064.
[3] Sung J, Lee G, Lee B. Progresses in the practical metasurface for holography and lens[J]. Nanophotonics, 2019, 8(10):1701-1718.
[4] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics:from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1):139-152.
[5] Genevet P, Capasso F. Holographic optical metasurfaces:a review of current progress[J]. Reports On Progress in Physics, 2015, 78(2):24401.
[6] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399.
[7] Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum[J]. Light-Science Applications, 2018, 7(3):17156.
[8] Chen Y, Yang X, Gao J. Spin-selective second-harmonic vortex beam generation with babinet-inverted plasmonic metasurfaces[J]. Advanced Optical Materials, 2018, 6(19):1800646.
[9] Pegard N C, Fleischer J W. Optimizing holographic data storage using a fractional Fourier transform[J]. Optics Letters, 2011, 36(13):2551-2553.
[10] Goh X M, Zheng Y, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour[J]. Nature Communications, 2014, 5:5361.
[11] Jin L, Dong Z, Mei S, et al. Noninterleaved metasurface for (2(6)-1) spin-and wavelength-encoded holograms[J]. Nano Letters, 2018, 18(12):8016-8024.
[12] Liu H, Yang B, Guo Q, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Science Advances, 2017, 3(9):e1701477.
[13] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3):220.
[14] Wang S, Wu P C, Su V, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-232.
[15] Nagasaki Y, Suzuki M, Takahara J. All-dielectric Dual-color pixel with subwavelength resolution[J]. Nano Letters, 2017, 17(12):7500-7506.
[16] Li Z, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette[J]. Acs Nano, 2016, 10(1):492-498.
[17] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 2017, 8:14606.
[18] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale, 2016, 8(15):8189-8194.
[19] Xiao Y, Qian H, Liu Z. Nonlinear metasurface based on giant optical kerr response of gold quantum wells[J]. Acs Photonics, 2018, 5(5):1654-1659.
[20] Li G, Wu L, Li K F, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation[J]. Nano Letters, 2017, 17(12):7974-7979.
[21] Minerbi E, Keren-Zur S, Ellenbogen T. Nonlinear metasurface fresnel zone plates for terahertz generation and manipulation[J]. Nano Letters, 2019, 19(9):6072-6077.
[22] Wang J, Yang J, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7):488-496.
[23] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
[24] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial huygens' surfaces[J]. Nano Letters, 2014, 14(5):2491-2497.
[25] Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12):1504-1505.
[26] Zheng G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312.
[27] Sung J, Lee G, Choi C, et al. Single-layer bifacial metasurface:full-space visible light control[J]. Advanced Optical Materials, 2019, 7(8):1801748.
[28] Deng Z, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5):2885-2892.
[29] Huang L, Chen X, Muehlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4:2808.
[30] Chen Y, Yang X, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces[J]. Light-Science Applications, 2018, 7(1):1-10.
[31] Franklin D, Modak S, Vazquez-Guardado A, et al. Covert infrared image encoding through imprinted plasmonic cavities[J]. Light-Science Applications, 2018, 7(1):93.
[32] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces:encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4):41056.
[33] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22):27438-27451.
[34] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35):12679-12683.
[35] Huang L, Muhlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41):6444.
[36] Wei Q, Huang L, Li X, et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5(18):1700434.
[37] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics:Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11):113901.
[38] Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption[J]. Light-Science Applications, 2018, 7(1):95.
[39] Wang B, Dong F, Li Q, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8):5235-5240.
[40] Wan W, Gao J, Yang X. Full-Color Plasmonic metasurface holograms[J]. Acs Nano, 2016, 10(12):10671-10680.
[41] Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11):e1601102.
[42] Lim K T P, Liu H, Liu Y, et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nature Communications, 2019, 10(1):25.
[43] Zhang Y, Shi L, Hu D, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 2019, 4(3):601-609.
[44] Hu Y, Luo X, Chen Y, et al. 3D-Integrated metasurfaces for full-colour holography[J]. Light-Science Applications, 2019, 8(1):1-9.
[45] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale, 2016, 8(15):8189-8194.
[46] Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces:asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2):23902.
[47] Zhao Y, Belkin M A, Alu A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications, 2012, 3:870.
[48] Frese D, Wei Q, Wang Y, et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Letters, 2019, 19(6):3976-3980.
[49] Cheng J, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces:lensing and cloaking applications at 532 nm wavelength[J]. Scientific Reports, 2016, 6:38440.
[50] Kamali S M, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7:11618.
[51] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.
[52] Han N, Huang L, Wang Y. Illusion and cloaking using dielectric conformal metasurfaces[J]. Optics Express, 2018, 26(24):31625-31635.
[53] Mehmood M Q, Mei S, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13):2533.
[54] Huang L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces[J]. Acs Photonics, 2017, 4(2):338-346.
[55] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6):343-348.
[56] Tan H, Deng J, Zhao R, et al. A Free-Space Orbital angular momentum multiplexing communication system based on a metasurface[J]. Laser Photonics Reviews, 2019, 13(6):1800278.
[57] Lin Z, Li X, Zhao R, et al. High-efficiency bessel beam array generation by Huygens metasurfaces[J]. Nanophotonics, 2019, 8(6):1079-1085.
[58] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29):5031-5036.
[59] Jia S L, Wan X, Fu X J, et al. Low-reflection beam refractions by ultrathin Huygens metasurface[J]. Aip Advances, 2015, 5(6):67102.
[60] Lee G, Yoon G, Lee S, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9):4237-4245.
[61] Song X, Huang L, Tang C, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(4):1701181.
[62] Song X, Huang L, Sun L, et al. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface[J]. Applied Physics Letters, 2018, 112(7):73104.
[63] Zhang T, Huang L, Li X, et al. High-efficiency broadband polarization converter based on Omega-shaped metasurface[J]. Journal of Physics D-Applied Physics, 2017, 50(45):454001.
[64] Zhao R, Huang L, Tang C, et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(19):1800490.
[65] Malek S C, Ee H, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6):3641-3645.
[66] Ji R, Hua Y, Chen K, et al. A switchable metalens based on active tri-layer metasurface[J]. Plasmonics, 2019, 14(1):165-171.
[67] Zhu W, Yang R, Fan Y, et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials[J]. Nanoscale, 2018, 10(25):12054-12061.
[68] Cheng Z, Rios C, Pernice W H P, et al. On-chip photonic synapse[J]. Science Advances, 2017, 3(9):e1700160.
[69] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1):60-75.
[70] Hwang C, Kim G H, Yang J, et al. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials[J]. Nanoscale, 2018, 10(46):21648-22655.
[71] Li T, Huang L, Liu J, et al. Tunable wave plate based on active plasmonic metasurfaces[J]. Optics Express, 2017, 25(4):4216-4226.
[72] Lin Z, Huang L, Zhao R, et al. Dynamic control of mode modulation and spatial multiplexing using hybrid metasurfaces[J]. Optics Express, 2019, 27(13):18740-18750.
[73] Li J, Kamin S, Zheng G, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4(6):eaar6768.
[74] Li T, Wei Q, Reineke B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 2019, 27(15):21153-21162.
[75] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7:11930.
[76] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography[J]. Nature Communications, 2016, 7:12533.
[77] Lin Z, Huang L, Xu Z T, et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Advanced Optical Materials, 2019:1900782.
[78] Reineke B, Sain B, Zhao R, et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography[J]. Nano Letters, 2019, 19(9):6585-6591.