[1] Baltsavias E P. Airborne laser scanning:existing systems and firms and other resources[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3):164-198.
[2] Tuell G, Barbor K, Wozencraft J. Overview of the coastal zone mapping and imaging lidar (CZMIL):A new multisensor airborne mapping system for the US army corps of engineers[C]//Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI. International Society for Optics and Photonics, 2010, 7695:76950R.
[3] Pe'eri S, Morgan L V, Philpot W D, et al. Land-water interface resolved from airborne LiDAR bathymetry (ALB) waveforms[J]. Journal of Coastal Research, 2011,62:75-85.
[4] Collin A, Long B, Archambault P. Merging land-marine realms:Spatial patterns of seamless coastal habitats using a multispectral LiDAR[J]. Remote Sensing of Environment, 2012, 123:390-399.
[5] Allouis T, Bailly J S, Pastol Y, et al. Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals[J]. Earth Surface Processes and Landforms, 2010, 35(6):640-650.
[6] Huang Tiancheng, Tao Bangyi, Mao Zhihua, et al.Classification of sea and land waveform based on multi-channel ocean lidar[J]. Chinese Journal of Lasers, 2017, 44(6):0610002. (in Chinese)
[7] Ma Yue, Zhang Wenhao, Zhang Zhiyu, et al. Sea and sea-ice waveform classification for the laser altimeter based on semi-analytic model[J]. Infrared and Laser Engineering, 2018, 47(5):0506005. (in Chinese)
[8] Nahhas F H, Shafri H Z M, Sameen M I, et al. Deep learning approach for building detection using lidar-orthophoto fusion[J]. Journal of Sensors, 2018:7212307.
[9] Hu X, Yuan Y. Deep-learning-based classification for DTM extraction from ALS point cloud[J]. Remote Sensing, 2016, 8(9):730.
[10] Arief H, Strand G H, Tveite H, et al. Land cover segmentation of airborne LiDAR data using stochastic atrous network[J]. Remote Sensing, 2018, 10(6):973.
[11] Maturana D, Scherer S. 3d convolutional neural networks for landing zone detection from lidar[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), 2015:3471-3478.
[12] Velas M, Spanel M, Hradis M, et al. Cnn for very fast ground segmentation in velodyne lidar data[C]//2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2018:97-103.
[13] Matti D, Ekenel H K, Thiran J P. Combining lidar space clustering and convolutional neural networks for pedestrian detection[C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017:1-6.
[14] Dewan A, Oliveira G L, Burgard W. Deep semantic classification for 3d lidar data[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017:3544-3549.
[15] Wang A, He X, Ghamisi P, et al. Lidar data classification using morphological profiles and convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):774-778.
[16] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[17] Dai W, Dai C, Qu S, et al. Very deep convolutional neural networks for raw waveforms[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017:421-425.
[18] Zhao Ming, Chen Shi, Yuen Dave. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics, 2019, 62(1):374-382. (in Chinese)