[1] Pogodin S A, Dubinsky S A. Diagram of state of the system In-Sb [J]. Izv Sektora Fiz -Khim Anal, 1949, 17: 204-208. (in Russian
[2] Liu T S, Peretti E A. The indium-antimony system [J]. Trans ASM, 1952, 44: 539-548.
[3] Gershon G, Albo A, Eylon M, et al. 3 mega-pixel InSb detector with 10μm pitch [C]//Proc of SPIE, 2013, 8704: 870438.
[4] Klipstein P, Klin O, Grossman S. “XBn” barrier detectors for high operating temperatures [C]//Proc of SPIE, 2010, 7608: 76081V.
[5] Kinch M A. Fundamentals of Infrared Detector Materials [M]. Bellingham: SPIE Press, 2007: 57.
[6] Kane E O. Band structure of indium antimonide [J]. J Phys and Chem Solids, 1957, 1(4): 249-261.
[7] Hamaguchi C. Basic Semiconductor Physics [M]. 3rd ed. Switzerland: Springer International Publishing, 2017: 30.
[8] Obukhov S A. Metal-Insulator Transition in InSb Induced by Doping, Magnetic Field, Uniaxial Stress and Hydrostatic Pressure [M]// Woo H G, Huang T C. Indium: Properties, Technoloical Applications and Health Issues. Newyork: Nova Publishers, 2013: 81-122.
[9] Micklethwaite W F H. 5 Bulk Growth of InSb and Related Ternary Alloys [M]//Capper P. Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials. Chichester: John Wiley & Sons Ltd., 2005: 150.
[10] Varshni Y P. Temperature dependence of the energy gap in semiconductors [J]. Physica, 1967, 34(1): 149-154. doi:  10.1016/0031-8914(67)90062-6
[11] Goldberg Y A. Chapt.9 Indium Antimonide(InSb) [M]//Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters: Vol. 1 Si, Ge, C(Diamond), GaAs, GaP, GaSb, InAs, InP, InSb. Singapore: World Scientific, 1996: 195.
[12] Dasa A, Khanb A. Carrier concentrations in degenerate semiconductors having band gap narrowing [J]. Z Naturforsch A, 2008, 63: 193-198.
[13] Law S, Liu R, Wasserman D. Doped semiconductors with band-edge plasma frequencies [J]. J Vac Sci & Techn B, 2014, 32: 052601.
[14] Unlu H, Karim M R, Gurel H H, et al. Chapt.1 Advances in Low-Dimensional Semiconductor Structures[M]//Unlu H, Horing N J M. Low Dimensional Semiconductor Structures: Characte- rization, Modeling and Applications. Heidelberg: Springer-Verlag, 2013: 3.
[15] Adachi S. III-V Ternary and Quaternary Compounds [M]//Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials. Würzburg: Springer Science+Business Media, 2006: 744.
[16] Owens A. Compound Semiconductor Radiation Detectors [M]. Boca Raton: CRC Press, 2012: 479.
[17] Tanaka A, Shintani J, Kimura M, et al. Multi-step pulling of GaInSb bulk crystal from ternary solution [J]. J of Crystal Growth, 2000, 209(4): 625-629. doi:  10.1016/S0022-0248(99)00753-8
[18] Wang R, Wang J, He G, et al. Improvement of GaInSb crystal quality by rotating magnetic field [J]. J Mat Sci: Mat in Electron, 2019, 30(16): 15654-15661. doi:  10.1007/s10854-019-01947-0
[19] Bachmann K J, Thiel F A, Schreiber Jr H, et al. Melt and solution growth of bulk single crystals of quaternary III-V alloys [J]. Prog Crystal Growth Charact, 1979, 2: 171-206. doi:  10.1016/0146-3535(81)90030-7
[20] Ito T. A pseudopotential approach to the structural and thermodynamical properties of III-V ternary semiconductor alloys [J]. Phys Stat Sol(B), 1985, 129(2): 559-568. doi:  10.1002/pssb.2221290213
[21] Adachi S. 30 III-V Ternary and Quaternary Compounds [M]//Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials. 2nd ed. Switzerland: Springer International Publishing, 2017: 735.
[22] Wang S, Kudrawiec R, Chi C, et al. 11 Dilute Bismide and Nitride Alloys for Mid-IR Optoelectronic Devices [M]//Tournié E, Cerutti L. Mid-Infrared Optoelectronics: Materials, Devices, and Applications. Duxford: Woodhead Publishing, 2020: 481.
[23] Klin O, Klipstein P C, Jacobsohn E, et al. Molecular beam epitaxy grown In1-xAlxSb/InSb structures for infrared detectors [J]. J Vacu Sci & Techn B, 2006, 24: 1607-1612.
[24] Klipstein P, Calahorra Z, Zemel A, et al. 3 rd generation infrared detector program at SCD: InAlSb focal plane arrays [C]//Proc of SPIE, 2004, 5612: 42-50.
[25] Wooley J C, Warner J. Optical energy-gap variation in InAs-InSb alloys [J]. Canadian Journal of Physics, 1964, 42(10): 1879-1885. doi:  10.1139/p64-176
[26] Rogalski A, Jóźwikowski K. Intrinsic carrier concentration and effective masses in InAs1−xSbx [J]. Infrared Phys, 1989, 29(1): 35-42. doi:  10.1016/0020-0891(89)90006-7
[27] Chin V W L, Egan R J, Tansley T L. Electron mobility in InAs1−xSbx and the effect of alloy scattering [J]. J Appl Phys, 1991, 69: 3571-3577. doi:  10.1063/1.348499
[28] Murawskia K, Gomółka E, Kopytko M, et al. Bandgap energy determination of InAsSb epilayers grown by molecular beam epitaxy on GaAs substrates [J]. Progress in Natural Science:Materials International, 2019, 29(4): 472-476. doi:  10.1016/j.pnsc.2019.08.005
[29] Webster P T, Riordan N A, Liu S, et al. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy [J]. J Appl Phys, 2015, 118: 245076.
[30] Rogalski A, Martyniuk P, Kopytko M, et al. InAsSb-based infrared photodetectors: Thirty years later on [J]. Sensors, 2020, 20: 7047. doi:  10.3390/s20247047
[31] Yen M Y, Levine B F, Bethea C G, et al. Molecular beam epitaxial growth and optical properties of InAs1-xSbx in 8-12 μm wavelength range [J]. Appl Phys Lett, 1987, 50: 927-929. doi:  10.1063/1.97982
[32] Gao Y Z, Gong X Y, Li J J, et al. Improved performance of InAs0.07Sb0.93 photoconductors operating at room temperature [J]. Optik, 2017, 142: 68-72. doi:  10.1016/j.ijleo.2017.05.058
[33] Wojkowski J S, Mohseni H, Kim J D, et al. Demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation in the 5-8 μm wavelength range [C]//Proc of SPIE, 1999, 3629: 357-363.
[34] Klipstein P, Klin O, Grossman S, et al. MWIR InAsSb XBn detectors for high operating temperatures [C]//Proc of SPIE, 2010, 7660: 76602 Y.
[35] Shtrichman I, Aronov D, Ezra M B, et al. High operating temperature epi-InSb and XBn-InAsSb photodetectors [C]//Proc of SPIE, 2012, 8353: 83532 Y.
[36] Wróbel J, Ciupa R, Rogalski A. Performance limits of room-temperature InAsSb photodiodes [C]//Proc of SPIE, 2010, 7660: 766033.
[37] Samajdar D P, Dhar S. Valence band structure of InAs1−xBix and InSb1−xBix alloy semiconductors calculated using valence band anticrossing model [J]. The Scientific World Journal, 2014, 2014: 704830.
[38] Anonyme. Novel thallium and bismuth based materials provide advantages [EB/OL]. (2007-01-03)[2021-10-10]. http://cqd.ece.northwestern.edu/research/intlasbisb.php.
[39] Lee J J, Kim J D, Razeghi M. Room temperature operation of 8-12 m InSbBi infrared photodetectors on GaAs substrates [J]. Appl Phys Lett, 1998, 73(5): 602-604. doi:  10.1063/1.121869
[40] Lee J J, Kim J D, Razeghi M. Long-wavelength infrared photodetectors based on InSbBi grown on GaAs substrates [J]. Appl Phys Lett, 1997, 71(16): 2298-2300. doi:  10.1063/1.120429
[41] Wood C E C, Noreika A, Francombe M. Thallimum incorporation in molecular-beam-epitaxial InSb [J]. J Appl Phys, 1986, 59(10): 3610-3612. doi:  10.1063/1.336793
[42] Van Schilfgaarde M, Sher A, Chen A B. InTlSb: An infrared detector material? [J]. Appl Phys Lett, 1993, 62(16): 1857-1859. doi:  10.1063/1.109523
[43] Staveteig P T, Choi Y H, Labeyrie G, et al. Photoconductance measurements on InTlSb/InSb/GaAs grown by low pressure metalorganic chemical vapor deposition [J]. Appl Phys Lett, 1994, 64(4): 460-462. doi:  10.1063/1.111129
[44] Bigan E, Choi Y H, Labeyrie G, et al. InTISb alloys for infrared detection [C]//Proc of SPIE, 1994, 2145: 2-5.
[45] Kim J D, Michel E, Park S, et al. Room-temperature operation of InTlSb infrared photodetectors on GaAs [J]. Appl Phys Lett, 1996, 69(3): 343-344. doi:  https://doi.org/10.1063/1.118054
[46] Lee J J, Razeghi M. Tl incorporation in InSb and lattice contraction of In1-xTlxSb [J]. Appl Phys Lett, 2000, 76(3): 297-299. doi:  10.1063/1.125765
[47] Wang S, Kudrawiec R, Chi C, et al. 11 Dilute Bismide and Nitride Alloys for Mid-IR Optoelectronic Devices [M]// Tournié E, Cerutti L. Mid-infrared Optoelectronics: Materials, Devices, and Applications. Duxford: Woodhead Publishing, 2020: 478-480.
[48] Ashley T, Burke T M, Pryce G J, et al. InSb1-xNx growth and devices [J]. Solid-State Electronics, 2003, 47(3): 387-394. doi:  10.1016/S0038-1101(02)00377-5
[49] Ashley T, Buckle L, Smith G W, et al. Dilute antimonide nitrides for very long wavelength infrared applications [C]// Proc of SPIE, 2006, 6206: 62060L.
[50] Patra N C, Bharatan S, Li J, et al. Annealing studies of heteroepitaxial InSbN on GaAs grown by molecular beam epitaxy for long-wavelength infrared detectors [J]. J Appl Phys, 2012, 112(8): 083107. doi:  10.1063/1.4759321
[51] Rajska D, Hnida-Gut K E, Gajewska M, et al. Adjusting the crystal size of InSb nanowires for optical band gap energy modification [J]. Materials Chemistry and Physics, 2020, 254(11): 123498.
[52] Wu Y, Yang P. Direct observation of vapor-liquid-solid nanowire growth [J]. J Am Chem Soc, 2001, 123(13): 3165-3166. doi:  10.1021/ja0059084
[53] Chen H, Sun X, Lai K W C, et al. Infrared detection using an InSb nanowire [C]//Proc of IEEE Nanotechnology Materials and Devices Conference, 2009: 212-216.
[54] Chen H, Lai K W C, Sun X, et al. Indium Antimonide (InSb) Nanowire-based Photodetectors [M]//Xi N, Lai K W C. Nano Optoelectronic Sensors and Devices: Nanophotonics from Design to Manufacturing. Amsterdam: Elsevier, 2012: 209-224.
[55] Razeghi M, Tsao S. Chapter 19 Quantum Dots for Infrared Focal Plane Arrays Grown by MOCVD [M]//Esaki L, Klitzing K V, Razeghi M. The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications. Washington: SPIE Press, 2013: 435-490.
[56] Ting D Z, Soibel A, Hill C J, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) [C]//Proc of SPIE, 2012, 8353: 835332.
[57] Liu W, Chang A Y, Schaller R D, et al. Colloidal InSb nanocrystals [J]. J Am Chem Soc, 2012, 134: 20258-20261. doi:  10.1021/ja309821j
[58] Busatto S, Ruiter M D, Jastrzebski J T B H, et al. Luminescent colloidal InSb quantum dots from in situ generated single-source precursor [J]. ACS Nano, 2020, 14(10): 13146-13160. doi:  10.1021/acsnano.0c04744
[59] Haddadi A, Suo X V, Adhikary S, et al. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices [J]. Appl Phys Lett, 2015, 107: 141104.
[60] Wu D, Dehzangi A, Li J, et al. High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD [J]. Appl Phys Lett, 2020, 116: 161108.
[61] Haddadi A, Dehzangi A, Adhikary S, et al. Background-limited long wavelength infrared InAs/InAs1-xSbx type-II superlattice-based photodetectors operating at 110 K [J]. APL Mater, 2017, 5: 035502.
[62] Michalczewski K, Martyniuk P, Kubiszyn L, et al. Demonstration of the very long wavelength infrared type-II superlattice InAs/InAsSb GaAs immersed photodetector operating at thermoelectric cooling [J]. IEEE Electron Device Letters, 2019, 40(9): 1396-1398. doi:  10.1109/LED.2019.2930106
[63] Ackerman M M, Tang X, G-Sionnest P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors [J]. ACS Nano, 2018, 12(7): 7264-7271. doi:  10.1021/acsnano.8b03425
[64] Livache C, Martinez B, Goubet N, et al. A colloidal quantum dot infrared photodetector and its use for intraband detection [J]. Nat Commun, 2019, 10: 2125.
[65] Anonyme. imec develops infrared thin-film sensor with 'record' pixel density [EB/OL]. (2019-10-23). https://optics.org/news/10/10/38.
[66] Anonyme. SWIR vision systems wins best of sensors 2020 award for its Acuros CQD SWIR Sensor [EB/OL]. (2020-11-17)[2021-12-20]. https://www.fierceelectronics.com/sensors/swir-vision-systems-wins-best-sensors-2020-award-for-its-acuros-cqd-swir-sensor.