[1] Zhang Y J, Liu J, Wang P. All-fiber wavelength-tunable passively mode-locked thulium-doped fiber laser [J]. Chinese Journal of Lasers, 2018, 45(10): 1001003. (in Chinese) doi:  10.3788/CJL201845.1001003
[2] Dai L L, Zou C H, Huang Q Q, et al. Continuously tunable mode-locked fiber laser based in tilted fiber grating [J]. Chinese Journal of Lasers, 2019, 46(5): 0508026. (in Chinese) doi:  10.3788/CJL201946.0508026
[3] Zhao S C, Qin P, Yan D Y, et al. Stable mode-locked Yb-fiber laser with a 6 MHz repetition rate tuning rang [J]. Infrared and Laser Engineering, 2021, 50(3): 20200205. (in Chinese)
[4] Gu X R, Cao X R, Li Y, et al. Nonlinear pulse compression of an ANDi Yb-fiber laser by a single-mode fiber amplifier [J]. Optical Engineering, 2020, 59(10): 106105. (in Chinese)
[5] Zhang J R, Gua Y C. Surface functional microstructure of biomedical materials prepared by ultrafast laser: A review [J]. Chinese Optics, 2019, 12(2): 199-213. (in Chinese) doi:  10.3788/co.20191202.0199
[6] Wang L Z, Xu P Z, Li Y H, et al. Femtosecond mode-locked fiber laser at 1 μm via optical microfiber dispersion management [J]. Scientific Reports, 2018, 8: 4732. (in Chinese) doi:  10.1038/s41598-018-23027-9
[7] Andy C, William H R, Frank W W. Properties of normal-dispersion femtosecond fiber lasers [J]. Journal of the Optical Society of America B, 2008, 25(2): 140-148. doi:  10.1364/JOSAB.25.000140
[8] Yang P L, Teng H, Fang S B, et al. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management [J]. Optics Letters, 2018, 43(8): 1730-1733. (in Chinese) doi:  10.1364/OL.43.001730
[9] Yu T Y, Liu X S, Andrey D P, et al. Femtosecond pulse compression using negative-curvature hollow-core fibers [J]. Chinese Optics, 2019, 12(1): 75-87. (in Chinese) doi:  10.3788/co.20191201.0075
[10] Xu Z, Dou J H, Xu X J. All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120 nm tuning range [J]. Applied Optics, 2017, 56(21): 5978-5981. (in Chinese) doi:  10.1364/AO.56.005978
[11] Huang S S, Wang Y G, Yan P G, et al. Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser [J]. Optics Express, 2014, 22(10): 11417-11426. (in Chinese) doi:  10.1364/OE.22.011417
[12] Jin X X, Wang X, Wang X L, et al. Tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror [J]. Applied Optics, 2015, 54(28): 8260-8264. (in Chinese) doi:  10.1364/AO.54.008260
[13] Hou L, Guo H Y, Wang Y G, et al. Tunable ytterbium-doped mode-locked fiber laser based on single-walled carbon nanotubes [J]. Journal of Lightwave Technology, 2019, 37(10): 2370-2374. (in Chinese) doi:  10.1109/JLT.2019.2904980
[14] Wang T, Wu J, Wu H S, et al. Wavelength-tunable LP11 mode pulse fiber laser based on black phosphorus [J]. Optics and Laser Technology, 2019, 119: 105618. (in Chinese) doi:  10.1016/j.optlastec.2019.105618
[15] Wang W L, Wang J, Xu L W, et al. Tunable fiber lasers based in semiconductor saturable absorber mirrors [J]. Laser Technology, 2019, 43(5): 672-675. (in Chinese)
[16] Hou L, Guo H Y, Wang Y G, et al. Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber [J]. Optics Express, 2018, 26(7): 9063-9070. (in Chinese) doi:  10.1364/OE.26.009063
[17] Zhang Z G. Femtosecond Laser Technology[M]. 2nd ed, Beijing: Science Press, 2017: 60-61. (in Chinese)