[1] Kabir E, Kumar P, Kumar S, et al. Solar energy: Potential and future prospects [J]. Renewable & Sustainable Energy Reviews, 2018, 82: 894-900.
[2] Bellos E. Progress in the design and the applications of linear Fresnel reflectors-A critical review [J]. Thermal Science and Engineering Progress, 2019, 10: 112-137. doi:  10.1016/j.tsep.2019.01.014
[3] Ge T S, Wang R Z, Xu Z Y, et al. Solar heating and cooling: Present and future development [J]. Renewable Energy, 2017, 126(10): 1126-1140.
[4] Gu Yujiong, Geng Zhi, Zhang Chen, et al. Review on key technologies of concentrating solar thermal power generation systems [J]. Thermal Power Generation, 2017, 46(6): 6-13. (in Chinese) doi:  10.3969/j.issn.1002-3364.2017.06.006
[5] Sun J, Zhang Z, Wang L, et al. Comprehensive Review of line-focus concentrating solar thermal technologies: Parabolic Trough Collector (PTC) vs Linear Fresnel Reflector (LFR) [J]. Journal of Thermal Science, 2020, 29(5): 1097-1124. doi:  10.1007/s11630-020-1365-4
[6] Ma Jun, Wang Chonglong, Xia Yangjun. Research progress on secondary concentrator for linear Fresnel reflector [J]. Sci Sin Tech, 2020, 50(8): 997-1008. (in Chinese) doi:  10.1360/SST-2020-0190
[7] Baum V A, Aparasi R R. High-power solar installations [J]. Solar Energy, 1957, 1(1): 6-12. doi:  10.1016/0038-092X(57)90049-X
[8] Beltagy H, Semmar D, Lehaut C, et al. Theoretical and experimental performance analysis of a Fresnel type solar concentrator [J]. Renewable Energy, 2017, 101: 782-793. doi:  10.1016/j.renene.2016.09.038
[9] Choudhury C, Sehgal H K. A fresnel strip reflector-concentrator for tubular solar-energy collectors [J]. Applied Energy, 1986, 23(2): 143-154. doi:  10.1016/0306-2619(86)90036-X
[10] Negi B S, Kandpal T C, Mathur S S. Optical and thermal performance evaluation of a linear Fresnel reflector solar concentrator [J]. Solar & Wind Technology, 1989, 6: 589-593.
[11] Negi B S, Kandpal T C, Mathur S S. Designs and performance characteristics of a linear fresnel reflector solar concentrator with a flat vertical absorber [J]. Solar & Wind Technology, 1990, 7: 379-392.
[12] Mathur S S, Kandpal T C, Negi B S. Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—II. Mirror elements of equal width [J]. Energy Conversion & Management, 1991, 31: 221-232.
[13] Feuermann D, Gordon J M. Analysis of a two-stage linear Fresnel reflector solar concentrator [J]. Journal of Solar Energy Engineering, 1991, 113(4): 272-279. doi:  10.1115/1.2929973
[14] 杜春旭, 王普, 马重芳, 等. 线性菲涅耳聚光系统无遮挡镜场布置的光学几何方法. 光学学报, 2010, 30(11): 3276-3282.

Du Chunxu, Wang Pu, Ma Chongfang, et al. Optical geometric method for LFR mirror field arrangement without shading and blocking[J]. Acta Optica Sinica, 2010, 30(11): 3276-3282. (in Chinese)
[15] 杜春旭, 王普, 马重芳, 等. 菲涅耳太阳能聚光系统几何矢量分析. 太阳能学报, 2011, 32(10): 1466-1469.

Du Chunxu, Wang Pu, Ma Chongfang, et al. Vector analysis of the geometric relationship of LFR[J]. Acta Energiae Solaris Sinica, 2011, 32(10): 1466-1469. (in Chinese)
[16] Du Chunxu, Wang Pu, Wu Yuting, et al. Performance analysis of shading and blocking of linear Fresnel reflector mirror field [J]. Acta Energiae Solaris Sinica, 2013, 34(11): 1868-1876. (in Chinese) doi:  10.3969/j.issn.0254-0096.2013.11.003
[17] Mills D R, Morrison G L. Compact Linear Fresnel Reflector solar thermal powerplants [J]. Solar Energy, 2000, 68(3): 263-283. doi:  10.1016/S0038-092X(99)00068-7
[18] Sharma V, Khanna S, Nayak J K, et al. Effects of shading and blocking in linear Fresnel reflector field [J]. Energy, 2016, 94: 633-653. doi:  10.1016/j.energy.2015.10.098
[19] Montes M J, Rubbia C, Abbas R, et al. A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power [J]. Energy, 2014, 73: 192-203. doi:  10.1016/j.energy.2014.06.010
[20] Song Jinghui, Ma Jishuai, Zhan Zhigang. Optical analysis and of of linear Fresnel collector [J]. Journal of Chinese Society Power Engineering, 2016, 36(7): 563-568. (in Chinese) doi:  10.3969/j.issn.1674-7607.2016.07.010
[21] 宋景慧, 马继帅, 代彦军. 线性菲涅尔集热器镜场设计理论与光学分析[J]. 可再生能源, 2016, 34(01): 1-8.

Song Jinghui, Ma Jishuai, Dai Yanjun. Design theory and optical analysis of the linear Fresnel collector's mirror field[J]. Renewable Energy Resources, 2016, 34(1): 1-8. (in Chinese)
[22] Abbs R, Sebastlan A, Montes M J, et al. Optical features of linear Fresnel collectors with different secondary reflector technologies [J]. Applied Energy, 2018, 232(C): 386-397.
[23] Zhu J, Huang H. Design and thermal performances of semi-parabolic linear Fresnel reflector solar concentration collector [J]. Energy Conversion and Management, 2014, 77: 733-737. doi:  10.1016/j.enconman.2013.10.015
[24] Momeni S, Menbari A, Alemrajabi A A, et al. Theoretical performance analysis of new class of Fresnel concentrated solar thermal collector based on parabolic reflectors [J]. Sustainable Energy Technologies and Assessments, 2019, 31(4): 25-33.
[25] 邱羽, 何雅玲, 程泽东. 线性菲涅尔太阳能系统光学性能研究与优化. 工程热物理学报, 2015, 36(12): 2551-2556.

Qiu Yu, He Yaling, Cheng Zedong. Optical performance investigation and optimization of a linear Fresnel reflector solar collector[J]. J Eng Thermophys, 2015, 36(12): 2551-2556. (in Chinese)
[26] Pulido-Iparraguirre D, Valenzuela L, Fernández-Reche J, et al. Design, manufacturing and characterization of linear Fresnel reflector's facets [J]. Energies, 2019, 12(14): 2795. doi:  10.3390/en12142795
[27] Pu Shaoxuan, Xia Chaofeng. End-loss and compensation of linear Fresnel collectors [J]. Transactions of the CSAE, 2011, 27: 282-285. (in Chinese) doi:  10.3969/j.issn.1002-6819.2011.09.049
[28] Bellos E, Tzivanidis C, Moghimi M A. Reducing the optical end losses of a linear Fresnel reflector using novel techniques [J]. Solar Energy, 2019, 186(7): 247-256.
[29] Yang M, Zhu Y, Taylor R A. End losses minimization of linear Fresnel reflectors with a simple, two-axis mechanical tracking system [J]. Energy Conversion and Management, 2018, 161: 284-293. doi:  10.1016/j.enconman.2018.01.082
[30] Diego Pulido-Iparraguirre, Loreto Valenzuela, Juan-José Serrano-Aguilera, et al. Optimized design of a linear Fresnel reflector for solar process heat applications [J]. Renewable Energy, 2019, 131(2): 1089-1106.
[31] Jie S, Wang R, Hui H, et al. An optimized tracking strategy for small-scale double-axis parabolic trough collector [J]. Applied Thermal Engineering, 2017, 112: 1408-1420. doi:  10.1016/j.applthermaleng.2016.10.187
[32] Cheng Z D, Zhao X R, He Y L. Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications [J]. Applied Energy, 2018, 224(15): 682-697.
[33] Men Jingjing, Zhao Xueru, Leng Yakun, et al. Study on multi-objective optimization of optical comprehensive performance of linear Fresnel reflector collectors [J]. Journal of Engineering Thermophysics, 2020, 41(7): 1706-1711. (in Chinese)
[34] Qu W, Wang R, Hong H, et al. Test of a solar parabolic trough collector with rotatable axis tracking [J]. Applied Energy, 2017, 207(1): 7-17.
[35] Barbon A, Bayon-Cueli C, Bayon L, et al. Influence of solar tracking error on the performance of a small-scale linear Fresnel reflector [J]. Renewable Energy, 2020, 162(C): 43-54.
[36] Qiu Y, He Y L, Cheng Z D, et al. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods [J]. Applied Energy, 2015, 146(15): 162-173.
[37] Yan Suying, Wei Zehui, Ma Jing, et al. Effections of dust accumulation on reflectance and heat properties of linear Fresnel concentrator system [J]. Acta Energiae Solaris Sinica, 2019, 40(3): 766-771. (in Chinese)
[38] Zhao X, Chen Z, Yan S, et al. Influence of dust accumulation on the solar reflectivity of a linear Fresnel reflector [J]. Journal of Thermal Science, 2021, 30: 1526-1540. doi:  10.1007/s11630-020-1379-y
[39] Wang Chenglong, Ma Jun, Fan Duowang. Arrangment and optimization of mirror field for linear Fresnel reflector system [J]. Optical and Precision Engineering, 2015, 23(1): 78-82. (in Chinese) doi:  10.3788/OPE.20152301.0078
[40] 马军, 王锐东, 王成龙, 等. 一种线性菲涅尔式聚光镜场的阴影与遮挡分析优化布设方法, ZL201710653340.8[P]. 2019-11-05.

Ma Jun, Wang Ruidong, Wang Chonglong, et al. An optimal arrangement method for shading and blocking analysis of linear Fresnel concentrator, CN: ZL201710653340.8 [P]. 2019-11-05. (in Chinese)
[41] 马军. 线性菲涅尔式太阳能聚光系统的优化设计及性能研究[D]. 兰州交通大学, 2020.

Ma Jun. Optimization design and performance research of linear Fresnel solar concentrating system[D]. Lanzhou Jiaotong University, 2020. (in Chinese)
[42] Winston R. Principles of solar concentrators of a novel design [J]. Sol Energy, 1974, 16: 89-95. doi:  10.1016/0038-092X(74)90004-8
[43] Gordon J M, Ries H. Tailored edge-ray concentrators as ideal second stages for Fresnel reflectors [J]. Appl Opt, 1993, 32(13): 2243-2251. doi:  10.1364/AO.32.002243
[44] Balaji S, Reddy K S, Sundararajan T. Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors [J]. Appl Energy, 2016, 179: 1138-1151. doi:  10.1016/j.apenergy.2016.07.082
[45] Zhu G D. New adaptive method to optimize the secondary reflector of linear Fresnel collectors [J]. Sol Energy, 2017, 144: 117-126. doi:  10.1016/j.solener.2017.01.005
[46] Chaitanya Prasad G S, Reddy K S, Sundararajan T. Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube [J]. Sol Energy, 2017, 150: 1-12. doi:  10.1016/j.solener.2017.04.026
[47] Grena R, Tarquini P. Solar linear Fresnel collector using molten nitrates as heat transfer fluid [J]. Energy, 2011, 36: 1048-1056. doi:  10.1016/j.energy.2010.12.003
[48] Canavarro D, Chaves J, Collares-Pereira M. Simultaneous multiple Surface method for Linear Fresnel concentrators with tubular receiver [J]. Sol Energy, 2014, 110: 105-116. doi:  10.1016/j.solener.2014.09.002
[49] Canavarro D, Chaves J, Collares-Pereira M. New dual asymmetric CEC linear Fresnel concentrator for evacuated tubular receivers[C]//AIP Conference Proceedings, 2017, 1850: 040001.
[50] Tsekouras P, Tzivanidis C, Antonopoulos K. Optical and thermal investigation of a linear Fresnel collector with trapezoidal cavity receiver [J]. Appl Thermal Eng, 2018, 135: 379-388. doi:  10.1016/j.applthermaleng.2018.02.082
[51] Wang Chenglong, Ma Jun, Fan Duowang. Design and analysis of a CPC with single vacuum tube for linear Fresnel reflector system [J]. Sci Sin Tech, 2014, 44(6): 597-602. (in Chinese) doi:  10.1360/N092014-00025
[52] 马军, 夏荣斌. 基于射线追踪法的线性菲涅尔聚光镜场阴影与遮挡分析[J]. 兰州交通大学学报, 2019, 38(4): 120-124.

Ma Jun, Xia Rongbin. Analysis on shading and blocking of a linear Fresnel reflector based on ray tracing method[J]. Journal of Lanzhou Jiaotong University 2019, 38(4): 120-124. (in Chinese)
[53] Hack M, Zhu G, Wendelin T. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs [J]. Appl Energy, 2017, 208: 1441-1451. doi:  10.1016/j.apenergy.2017.09.009
[54] Hberle A, Zahler C, Lerchenmüller H, et al. The solarmundo line focussing Fresnel collector: Optical and thermal performance and cost calculations [C]//Proceedings of 11 th International Solar Power and Chemical Energy Systems (SolarPACES) Symposium, 2002.
[55] Eck M, Uhlig R, Mertins M, et al. Thermal load of direct steam-generating absorber tubes with large diameter in horizontal linear fresnel collectors [J]. Heat Transfer Engineering, 2007, 28(1): 42-48. doi:  10.1080/01457630600985659
[56] Zhao Jinlong, Li Lin, Cui Zhengjun, et al. Calculation of flux density distribution on focal plane in linear Fresnel reflector [J]. Acta Optical Sinica, 2012(12): 1208001. (in Chinese)
[57] Qiu Y, Li M J, Wang K, et al. Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm [J]. Applied Energy, 2017, 205: 1394-1407. doi:  10.1016/j.apenergy.2017.09.092
[58] Craig K J, Moghimi M A, Rungasamy A E, et al. Finite-volume ray tracing using computational fluid dynamics in linear focus CSP applications [J]. Applied Energy, 2016, 183: 241-256. doi:  10.1016/j.apenergy.2016.08.154
[59] Moghimi M A, Craig K J, Meyer J P. A novel computational approach to combine the optical and thermal modelling of linear Fresnel collectors using the finite volume method [J]. Solar Energy, 2015, 116: 407-427. doi:  10.1016/j.solener.2015.04.014
[60] Ma Jun, Wang Chenglong, Xia Yangjun. Compound parabolic collector for linear Fresnel reflector system [J]. Opt Precis Eng, 2019, 27(12): 2542-2548. (in Chinese) doi:  10.3788/OPE.20192712.2542
[61] He Yaling, Wang Kun, Du Baocun, et al. Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: A review [J]. Chin Sci Bull, 2016, 61(30): 3208-3237. (in Chinese) doi:  10.1360/N972016-00604
[62] Vouros A, Mathioulakis E, Papanicolaou E, et al. On the optimal shape of secondary reflectors for linear Fresnel collectors [J]. Renewable Energy, 2019, 143: 1454-1464. doi:  10.1016/j.renene.2019.05.044
[63] Bellos E, Tzivanidis C, Papadopoulos A. Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium [J]. Applied Thermal Engineering, 2018, 133: 70-80. doi:  10.1016/j.applthermaleng.2018.01.038
[64] He Y L, Wang K, Qiu Y, et al. Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions [J]. Applied Thermal Engineering, 2019, 149: 448-474. doi:  10.1016/j.applthermaleng.2018.12.006
[65] Sirimanna G, Nixon J D. Effects of Mirror Geometry on the Optical Efficiency of a Linear Fresnel Reflector (LFR) [M]//Sayigh A. Renewable Energy and Sustainable Buildings. Brighton: Innovative Renewable Energy, 2020: 337-347.
[66] Santos A V, Canavarro D, Collares-Pereira M. The gap angle as a design criterion to determine the position of linear Fresnel primary mirrors [J]. Renewable Energy, 2021, 163: 1397-1407. doi:  10.1016/j.renene.2020.09.017
[67] Ma J, Wang C L, Zhou Y, et al. Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector [J]. Renewable Energy, 2021, 171: 141-148. doi:  10.1016/j.renene.2021.02.100
[68] Montes M J, Abanades A, Martinez-Val J M, et al. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors [J]. Solar Energy, 2009, 83(12): 2165-2176. doi:  10.1016/j.solener.2009.08.010
[69] Peterseim J H, White S, Tadros A, et al. Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? [J]. Renewable Energy, 2013, 57: 520-532. doi:  10.1016/j.renene.2013.02.014
[70] Feldhoff J F, Benitez D, Eck M, et al. Economic potential of solar thermal power plants with direct steam generation compared with HTF plants [J]. Journal of Solar Energy Engineering, 2010, 132(11): 1001-1009.
[71] Modi A, Haglin D F. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation [J]. Applied Thermal Engineering, 2014, 65(1-2): 201-208. doi:  10.1016/j.applthermaleng.2014.01.010
[72] Bachelier C, Stieglitz R. Design and optimisation of linear Fresnel power plants based on the direct molten salt concept [J]. Solar Energy, 2017, 152: 171-192. doi:  10.1016/j.solener.2017.01.060
[73] Bellos E, Tzivanidis C, Antonopoulos K A. A detailed working fluid investigation for solar parabolic trough collectors [J]. Applied Thermal Engineering, 2017, 114: 374-386. doi:  10.1016/j.applthermaleng.2016.11.201
[74] Pacio J, Wetzel T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems [J]. Solar Energy, 2013, 93: 11-22. doi:  10.1016/j.solener.2013.03.025
[75] Qiu Y, Li M J, He Y L, et al. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux [J]. Applied Thermal Engineering, 2016, 115: 1255-1265.
[76] Ramon F G. Preliminary design study for a lunar solar power station using local resources [J]. Sol Energy, 2012, 86: 2871-2892. doi:  10.1016/j.solener.2012.06.027
[77] Pérez-Lvarez R, Acosta-Iborra A, Santana D. Thermal and mechanical stresses in bayonet tubes of solar central receivers working with molten salt and liquid sodium [J]. Engineering, 2020, 5: 100073.
[78] Khandelwal N, Sharma M, Singh O, et al. Comparative analysis of the linear Fresnel reflector assisted solar cycle on the basis of heat transfer fluids[J]. Materials Today: Proceedings, 2020, 38(1).
[79] Okafor I F, Dirker J, Meyer J P. Influence of circumferential solar heat flux distribution on the heat transfer coefficients of linear Fresnel collector absorber tubes [J]. Solar Energy, 2014, 107: 381-397. doi:  10.1016/j.solener.2014.05.011
[80] Wang P, Liu D Y, Xu C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams [J]. Applied Energy, 2013, 102: 449-60. doi:  10.1016/j.apenergy.2012.07.026
[81] Zhu Xiaowei, Fu Yunhan, Zhao Jingquan, et al. A novel wavy-tape insert configuration for pipe heat transfer augmentation [J]. Energy Conversion & Management, 2016, 127: 140-148.
[82] Bellos E, Tzivanidis C, Tsimpoukis D. Thermal enhancement of parabolic trough collector with internally finned absorbers [J]. Solar Energy, 2017, 157: 514-531. doi:  10.1016/j.solener.2017.08.067
[83] Jaramillo O A, Borunda M, Velazquez-Lucho K M, et al. Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts [J]. Renew Energy, 2016, 93: 125-141. doi:  10.1016/j.renene.2016.02.046
[84] Yan Weiwei, Ge Shifu, Li Yang. Numerical simulation on heat transfer enhancement in parabolic trough solar collector of DSG systems [J]. Journal of Chinese Society of Power Engineering, 2013, 33(7): 550-554. (in Chinese) doi:  10.3969/j.issn.1674-7607.2013.07.009
[85] Geng Z, Gao J, Liu H, et al. Heat transfer enhancement and field synergy analysis of vacuum collector tube with inserted rotor [J]. AIP Advances, 2020, 10(4): 045224. doi:  10.1063/5.0004185
[86] Massidda L, Varone A. A numerical analysis of a high temperature solar collecting tube using gas as a heat transfer fluid[R]. Pula: Center for Advanced Studies, Research and Development in Sardinia (CRS4), 2007.
[87] Delussu G. A qualitative thermo-fluid-dynamic analysis of a CO2 solar pipe receiver [J]. Solar Energy, 2012, 86: 926-934. doi:  10.1016/j.solener.2011.12.023
[88] He Y L, Zhang Y W. Advances and outlooks of heat transfer enhancement by longitudinal vortex generators [J]. Adv Heat Transfer, 2012, 44: 119-185.
[89] Yang C , Zhang Y, Yan F, et al. The numerical simulation of enhanced heat transfer on a Linear Fresnel molten salt-type receiver tube filled with porous media [C]//E3 S Web of Conferences, 2019, 118(5): 01041.
[90] Subramani J, Nagarajan P K, Mahian O, et al. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime [J]. Renewable Energy, 2018, 119: 19-31. doi:  10.1016/j.renene.2017.11.079
[91] Bellos E, Tzivanidis C, Papadopoulos A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber [J]. Journal of Thermal Analysis and Calorimetry, 2018(1): 237-255.
[92] Almanza R, Lentz A, Jimenez G. Receiver behavior in direct steam generation with parabolic troughs [J]. Solar Energy, 1997, 61: 275-278. doi:  10.1016/S0038-092X(97)88854-8
[93] Ghodbane M, Bellos E, Said Z, et al. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector [J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(6): 4197-4215. doi:  10.1007/s10973-020-09384-6
[94] Aldali Y, Muneer T, Henderson D. Solar absorber tube analysis: Thermal simulation using CFD [J]. International Journal of Low-Carbon Technologies, 2013, 8: 14-19. doi:  10.1093/ijlct/ctr039
[95] Ebrahimpour Z, Sheikholeslami M, Farshad S A. Radiation and convection treatment of nanomaterial within a linear Fresnel reflector unit [J]. European Physical Journal Plus, 2021, 136(2): 01141.
[96] Rajendran D R, Sundaram E G, Jawahar P, et al. Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design [J]. Journal of Thermal Analysis and Calorimetry, 2019, 140(1): 33-51.
[97] María José Montes, Ruben Abbas, Muñoz M, et al. Advances in the linear Fresnel single-tube receivers: Hybrid loops with non-evacuated and evacuated receivers [J]. Energy Conversion and Management, 2017, 149: 318-333. doi:  10.1016/j.enconman.2017.07.031
[98] Burkholder F, Kutscher C. Heat loss testing of Schott's 2008 PTR70 parabolic trough receiver [R]. Colorado: National Renewable Energy Laboratory, 2009.
[99] Schön J H, Binder G, Bucher E. Performance and stability of some new high-temperature selective absorber systems based on metal/dielectric multilayers [J]. Solar Energy Materials and Solar Cells, 1994, 33(4): 403-416. doi:  10.1016/0927-0248(94)90001-9
[100] Sathiaraj T S, Thangaraj R, Sharbaty A, et al. Ni-Al2O3 selective cermet coatings for photothermal conversion up to 500 [J]. Thin Solid Films, 1990, 190: 241-254. doi:  10.1016/0040-6090(89)90914-0
[101] Eva C, Men W, Sánchez-García J A, et al. Novel Mo-Si3N4 based selective coating for high temperature concentrating solar power applications [J]. Solar Energy Materials and Solar Cells, 2014, 122: 217-225. doi:  10.1016/j.solmat.2013.12.005
[102] Shen Y, Shi Y Y, Wang F C. High-temperature optical properties and stability of AlxOy-AlNx-Al solar selective absorbing surface prepared by DC magnetron reactive sputtering [J]. Solar Energy Materials and Solar Cells, 2003, 77: 393-403. doi:  10.1016/S0927-0248(02)00361-6
[103] Ding Dawei, Cai Weimin. Computer simulation of high-temperature solar selective absorption [J]. Acta Energiae Solaris Sinica, 2008, 26(11): 1353-1358. (in Chinese)
[104] Lin M, Sumathy K, Dai Y J, et al. Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver [J]. Applied Thermal Engineering, 2013, 51: 963-972. doi:  10.1016/j.applthermaleng.2012.10.050
[105] Esposito S, Antonaia A, Addonizio M L, et al. Fabrication and optimisa- tion of highly efficient cermet-based spectrally selective coatings for high operating temperature [J]. Thin Solid Film, 2009, 517: 6000-6006.
[106] Yang H, Wang Q, Huang X, et al. Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers [J]. Energy, 2018, 145: 206-216. doi:  10.1016/j.energy.2017.12.126
[107] Che Deyong, Ding Hu, Gao Long, et al. Modeling of CPC concentrating collector vacuum layer heat transfer [J]. Renewable Energy Resources, 2016, 34(11): 1674-1679. (in Chinese)
[108] López-Alvarez L A, Larraneta M, Silva-Pérez M A, et al. Impact of the variation of the receiver glass envelop transmittance as a function of the incidence angle in the performance of a linear Fresnel collector [J]. Renewable Energy, 2020, 150: 607-615. doi:  10.1016/j.renene.2020.01.016
[109] Qiu Y, He Y L, Wu M, et al. A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver [J]. Renewable Energy, 2016, 97: 129-144. doi:  10.1016/j.renene.2016.05.065
[110] Reddy K S, Balaji S, Sundararajan T, et al. Estimation of heat losses due to wind effects from linear parabolic secondary reflector -receiver of solar LFR module [J]. Energy, 2018, 150: 410-433. doi:  10.1016/j.energy.2018.02.125
[111] Guadamud E, Oliva A, Lehmkuhl O, et al. Thermal analysis of a receiver for linear Fresnel reflectors [J]. Energy Procedia, 2015, 69: 405-414. doi:  10.1016/j.egypro.2015.03.047
[112] Parikh A, Martinek J, Mungas G, et al. Investigation of temperature distribution on a new linear Fresnel receiver assembly under high solar flux [J]. International Journal of Energy Research, 2019, 43(9): 4051-4061. doi:  10.1002/er.4374
[113] Hofer A, Cuevas F, Heimsath A, et al. Extended heat loss and temperature analysis of three linear Fresnel receiver designs [J]. Energy Procedia, 2015, 69: 424-433. doi:  10.1016/j.egypro.2015.03.049
[114] Lai Yanhua, Song Gu, Lu Mingxin, et al. Thermal performance analysis of linear fresnel reflector concentrator with a compound parabolic cavity absorber [C]//International Conference on Materials for Renewable Energy & Environment, 2011.
[115] Mohan S, Saxena A, Singh S. Heat loss analysis from a trapezoidal cavity receiver in LFR system using conduction-radiation model [J]. Solar Energy, 2018, 159: 37-43. doi:  10.1016/j.solener.2017.10.060
[116] Ardekani M M, Craig K J, Meyer J P. Optimization of insulation of a linear Fresnel collector [C]//AIP Conference Proceedings, 2017, 1850(1): 040005.