[1] Wood R W. Physical Optics [M]. 3rd ed. New York: Mac-millan Co, 1934.
[2] Swanson G J, Veldkamp W B. Binary lenses for use at 10.6 micrometers [J]. Optical Engineering, 1985, 24(5): 791-795. doi:  10.1117/12.7973576
[3] Swanson G J, Veldkamp W B. Diffractive optical elements for use in infrared systems [J]. Optical Engineering, 1989, 28(6): 605-608. doi:  10.1117/12.7977008
[4] Xie C Q. Research progress on complete fabrication technology of diffractive optical elements [J]. Optics and Precision Engineering, 2022, 30(15): 1815-1827. (in Chinese) doi:  10.37188/OPE.20223015.1815
[5] Shang Y Q, Qi H, Ma Y L, et al. Study on sapphire microstructure processing technology based on wet etching [J]. International Journal of Modern Physics B, 2017, 31(7): 1741004. doi:  10.1142/S0217979217410041
[6] Liu X Q, Bai B F, Chen Q D, et al. Etching-assisted femto-second laser modification of hard materials [J]. Opto-Electronic Advances, 2019, 2(9): 09190021. doi:  10.29026/oea.2019.190021
[7] Chen J L, Lu X Z, Wen Q L, et al. Review on laser-induced etching processing technology for transparent hard and brittle materials [J]. International Journal of Advanced Manufacturing Technology, 2021, 117(9-10): 2545-2564. doi:  10.1007/s00170-021-07853-2
[8] Suleski T J, Oshea D C. Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers [J]. Applied Optics, 1995, 34(32): 7507-7517. doi:  10.1364/AO.34.007507
[9] Pawlowski E. Thin film deposition: an alternative technique for the fabrication of binary opticswith high efficiency[C]//4th International Conference on Holographic Systems, Components and Applications, 1993: 54-59.
[10] Karlsson M, Nikolajeff F. Fabrication and evaluation of a diamond diffractive fan-out element for high power lasers [J]. Optics Express, 2003, 11(3): 191-198. doi:  10.1364/OE.11.000191
[11] Blough C G, Rossi M, Mack S K, et al. Single-point diamond turning and replication of visible and near-infrared diffractive optical elements [J]. Applied Optics, 1997, 36(20): 4648-4654. doi:  10.1364/AO.36.004648
[12] Davies M A, Evans C J, Vohra R R, et al. Application of precision diamond machining to the manufacture of microphotonics components[C]//Lithographic and micromachi-ning techniques for optical component fabrication II, 2003: 94-108.
[13] Jin G F, Yan Y B, X W M. Binary Optics[M]. Beijing: National Defense Industry Press, 1998. (in Chinese)
[14] Li Y X. New method for mass replication of diffractive optical elements [J]. Yunguang Technology, 2004, 36(2): 33-37. (in Chinese)
[15] Tsai K M. Effect of injection molding process parameters on optical properties of lenses [J]. Applied Optics, 2010, 49(31): 6149-6159. doi:  10.1364/AO.49.006149
[16] Jia X S, Chen Y Q, Liu L, et al. Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing [J]. Optics & Laser Technology, 2022, 153: 108209. doi:  10.1016/j.optlastec.2022.108209
[17] Qiao W, Pu D, Chen L S. Nanofabrication toward high-resolution and large area[C]//2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), 2021: 42-46.
[18] Ai J. Study on key technologies of high-efficiency laser direct writing lithography on curved surfaces [D]. Wuhan: Huazhong University of Science & Technology, 2018. (in Chinese)
[19] Gale M T, Rossi M, Schütz H, et al. Continuous-relief diffractive optical elements for two-dimensional array generation [J]. Applied Optics, 1993, 32(14): 2526-2533. doi:  10.1364/AO.32.002526
[20] Gale M T, Rossi M, Pedersen J, et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists [J]. Optical Engineering, 1994, 33(11): 3556-3566. doi:  10.1117/12.179892
[21] Hou D S, Du C L, Qiu C K, et al. Model ISI-2802 laser direct write system and its applications [J]. Opto-Electronic Engineering, 1997(S1): 26-30. (in Chinese)
[22] Wang M R, Su H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication [J]. Applied Optics, 1998, 37(32): 7568-7576. doi:  10.1364/AO.37.007568
[23] Salgueiro J R, Roman J F, Cuevas V M. System for laser writing to lithograph masks for integrated optics [J]. Optical Engineering, 1998, 37(4): 1115-1123. doi:  10.1117/1.601945
[24] Smuk A Y, Lawandy N M. Direct laser writing of diffractive optics in glass [J]. Optics Letters, 1997, 22(13): 1030-1032. doi:  10.1364/OL.22.001030
[25] Burge J H, Anderson D S, Milster T D, et al. Measurement of a convex secondary mirror using a holographic test plate [J]. Advanced Technology Optical Telescopes V, 1994: 193-198.
[26] Burge J H, Fehniger M J, Cole G C. Demonstration of accuracy and flexibility of using CGH test plates for measuring aspheric surfaces[C]//Optical Manufacturing and Testing II, 1997: 379-389.
[27] Swa B, Mzza C, Mbla B, et al. Progresses on new generation laser direct writing technique [J]. Materials Today Nano, 2021, 16: 100142. doi:  10.1016/j.mtnano.2021.100142
[28] Stoian R, Colombier J P. Advances in ultrafast laser structuring of materials at the nanoscale [J]. Nanophotonics, 2020, 9(16): 4665-4688. doi:  10.1515/nanoph-2020-0310
[29] Xu S J, Duan Y Z, Yu Y H, et al. Machine vision-based high-precision and robust focus detection for femtosecond laser machining [J]. Optics Express, 2021, 29(19): 30952-30960. doi:  10.1364/OE.438537
[30] Du J L, Li F X, Peng F P, et al. Large-range and high-precision autofocus method based on an annular DOE for a laser direct writing system [J]. Optics Express, 2022, 30(5): 6981-6990. doi:  10.1364/OE.449611
[31] Zhu F, Zhou C, Ma J. Calibration and pre-compensation of direct laser writing system[C]//Holography, Diffractive Optics, and Applications V, SPIE, 2012, 8556: 193-199.
[32] Häfner M, Reichle R, Pruss C, et al. Laser direct writing of diffractive structures on curved surfaces[C]//DGaO Proceed- ings, 2012.
[33] Ai J, Du Q, Qin Z, et al. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights [J]. Optics Express, 2018, 26(16): 20965-20974. doi:  10.1364/OE.26.020965
[34] Wu Z L, Qi Y N, Yin X J, et al. Polymer-based device fabri-cation and applications using direct laser writing technology [J]. Polymers, 2019, 11(3): 553. doi:  10.3390/polym11030553
[35] Jwad T, Deng S, Butt H, et al. Fabrication of TiO2 thin film based fresnel zone plates by nanosecond laser direct writing [J]. Journal of Micro and Nano-Manufacturing, 2017, 6(1): 011001. doi:  10.1115/1.4038097
[36] Li Fengyou. Study on technology laser direct writing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2002. (in Chinese)
[37] Lee K S, Ran H K, Yang D Y, et al. Advances in 3D nano/microfabrication using two-photon initiated polymeri-zation [J]. Progress in Polymer Science, 2008, 33(6): 631-681. doi:  10.1016/j.progpolymsci.2008.01.001
[38] Liu Y Q, Sun H B. Progress and application of nonlinear laser manufacturing (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20220005. (in Chinese) doi:  10.3788/IRLA20220005
[39] Wang X, Yu H, Li P, et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: A review [J]. Optics & Laser Technology, 2021, 135(3): 106687. doi:  10.1016/j.optlastec.2020.106687
[40] Gao S, Wang Z H, Hua J G, et al. Sub-diffraction-limit fabrication of sapphire by femtosecond laser direct writing [J]. Acta Physica Sinica, 2017, 66(14): 147901. (in Chinese) doi:  10.7498/aps.66.147901
[41] Liu P Y, Liu Z X, Cao Y Y, et al. Microfiber long-period grating based on two-photon polymerization technology [J]. Laser & Optoelectronics Progress, 2021, 58(23): 2306006. (in Chinese) doi:  10.3788/LOP202158.2306006
[42] Wang R R, Zhang W C, Jin F, et al. Fabrication of polyaniline microstructure via two-photon polymerization [J]. Chinese Journal of Lasers, 2021, 48(2): 0202006. (in Chinese) doi:  10.3788/CJL202148.0202006
[43] Liao C R, Li B Z, Zou M Q, et al. Optical fiber integrated micro/nano-structured device fabricated by femtosecond laser induced two-photon polymerization and its applications [J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306005. (in Chinese) doi:  10.3788/LOP202158.1306005
[44] Su Y H, Qin T T, Xu B, et al. Patterned microlens processed using two-photon polymerization of femtosecond laser and its imaging test [J]. Optics and Precision Engineering, 2020, 28(12): 2629-2635. (in Chinese) doi:  10.37188/OPE.20202812.2629
[45] Jiang T. The fabrication and performance characterization of micro-optical components based on femtosecond laser direct writing[D]. Changchun: Jilin Univerity, 2014. (in Chinese)
[46] Ma W, Zhang P, Zhou W, et al. Femtosecond-laser direct-writing volume phase gratings inside Ge–As–S chalcogenide glass [J]. Ceramics International, 2020, 46(11): 17599-17605. doi:  10.1016/j.ceramint.2020.04.061
[47] Tian Z N, Cao X W, Yao W G, et al. Hybrid refractive-diffractive optical vortex microlens [J]. IEEE Photonics Technology Letters, 2016, 28(21): 2299-2302. doi:  10.1109/LPT.2016.2591238
[48] Liu X Q, Cheng R, Zheng J X, et al. Wear-resistant blazed gratings fabricated by etching-assisted femtosecond laser lithography [J]. Journal of Lightwave Technology, 2021, 39(14): 4690-4694. doi:  10.1109/JLT.2021.3066976
[49] Mizoshiri M, Arakane S, Sakurai J, et al. Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles [J]. Applied Physics Express, 2016, 9(3): 036701. doi:  10.7567/APEX.9.036701
[50] Zhang H, Tang M, McCoy J, et al. Deposition of tungsten nanogratings induced by a single femtosecond laser beam [J]. Optics Express, 2007, 15(10): 5937-5947. doi:  10.1364/OE.15.005937
[51] Jiang J. Study of diffraction optical element fabricated by polar coordinate femtosecond laser direct writing on curved surface[D]. Changchun: Jilin University, 2017. (in Chinese)
[52] Wang H, Liu S, Zhang Y L, et al. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing [J]. Science and Technology of Advanced Materials, 2015, 16(2): 024805. doi:  10.1088/1468-6996/16/2/024805
[53] Ma Y C, Wang L, Guan K M, et al. Silicon-based suspended structure fabricated by femtosecond laser direct writing and wet etching [J]. IEEE Photonics Technology Letters, 2016, 28(15): 1605-1608. doi:  10.1109/LPT.2016.2554203
[54] Yu Y H, Tian Z N, Jiang T, et al. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing [J]. Optics Communications, 2016, 362: 69-72. doi:  10.1016/j.optcom.2015.08.039
[55] Xu B, Wei G J, Chen L S. Research advances in technology of laser direct writing [J]. Optoelectronic Technology & Information, 2004, 17(6): 1-5. (in Chinese)
[56] Jiang J, Liu J Q, Xu Y, et al. Laser direct writing technique of diffraction optical element on curved-surface substrate [J]. Chinese Journal of Lasers, 2017, 44(6): 0602002. (in Chinese) doi:  10.3788/cjl201744.0602002
[57] Low M J, Lee H, Lim C H J, et al. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing [J]. Applied Surface Science, 2020, 526: 146647. doi:  10.1016/j.apsusc.2020.146647
[58] Hua J G, Hu Z Y, Xu S J, et al. Centimeter-sized aplanatic hybrid diffractive-refractive lens [J]. IEEE Photonics Tech-nology Letters, 2018, 31(1): 3-6. doi:  10.1109/LPT.2018.2880013
[59] Sola D, Alamri S, Lasagni A, et al. Fabrication and characterization of diffraction gratings in ophthalmic polymers by using UV direct laser interference patterning [J]. Applied Surface Science, 2019, 476: 128-135. doi:  10.1016/j.apsusc.2019.01.071
[60] Poleshchuk A, Sametov R, Sedukhin A. Multibeam laser writing of diffractive optical elements [J]. Optoelectronics, Instrumentation and Data Processing, 2012, 48(4): 327-333. doi:  10.3103/S8756699012040012
[61] Winfield R, Bhuian B, O’Brien S, et al. Fabrication of grating structures by simultaneous multi-spot fs laser writing [J]. Applied Surface Science, 2007, 253(19): 8086-8090. doi:  10.1016/j.apsusc.2007.02.100
[62] Arnoux C, Pérez-Covarrubias L A, Khaldi A, et al. Under-standing and overcoming proximity effects in multi-spot two-photon direct laser writing [J]. Additive Manufacturing, 2022, 49: 102491. doi:  10.1016/j.addma.2021.102491
[63] Zhou L Q, Zhu L W, Shi Q. Grating parallel fabrication based on the multifocal spots [J]. Journal of Ludong University (Natural Science Edition), 2021, 37(4): 320-325. (in Chinese)
[64] Du J L, Shi R Y, Cui Z, et al. Proximity effects during mask fabrication [J]. Micronanoelectronic Technology, 2002(11): 36-40. (in Chinese)
[65] Liu S Y, Zhang J Y. Principles and applications of ultrafast laser processing based on spatial light modulators [J]. Laser & Optoelectronics Progress, 2020, 57(11): 111431. (in Chinese) doi:  10.3788/LOP57.111431
[66] Zhang C, Hu Y, Du W, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels [J]. Scientific reports, 2016, 6(1): 1-9. doi:  10.1038/srep33281
[67] Yang D, Liu L, Gong Q, et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering [J]. Macromolecular Rapid Communica-tions, 2019, 40(8): 1900041. doi:  10.1002/marc.201900041
[68] Yan G B. The development of multifunction digital holo-graphic laser interference direct writing system[D]. Qingdao: Ocean University of China, 2015. (in Chinese)
[69] Zhou K, Li D J, Wang Y F, et al. Target detection performance of infrared spectrum with diffractive optical system [J]. Infrared and Laser Engineering, 2021, 50(8): 20200371. (in Chinese) doi:  10.3788/IRLA20200371
[70] Huang H, Zhai T, Song Q, et al. Wide angle 2D beam splitter design based on vector diffraction theory [J]. Optics Com-munications, 2019, 434: 28-35. doi:  10.1016/j.optcom.2018.10.026
[71] Lin Y. Design of diffractive optical elements for laser beam shaping[D]. Dalian: Dalian University of Technology, 2009. (in Chinese)
[72] Yang H T, Yang X F, Mei C, et al. Design of hybrid refractive-diffractive infrared dual-band zoom optical system [J]. Infrared and Laser Engineering, 2020, 49(10): 20200036. (in Chinese) doi:  10.3788/IRLA20200036
[73] Zhu J Y, Xie Y J. Large aperture lidar receiver optical system based on diffractive primary lens [J]. Infrared and Laser Engineering, 2017, 46(5): 0518001. (in Chinese) doi:  10.3788/irla201746.0518001
[74] Qu W D, Gu H R, Tan Q F, et al. Precise design of two-dimensional diffractive optical elements for beam shaping [J]. Applied Optics, 2015, 54(21): 6521-6525. doi:  10.1364/AO.54.006521
[75] Zhang W. Design and applications of large aperture diffractive optical elements in "Shen Guang" device[D]. Hefei: University of Science & Technology of China, 2007. (in Chinese)
[76] Zhang F Q, Fan X, Zhu B, et al. Athermal design of long-wave infrared optical system with hybrid refractive/diffractive [J]. Infrared and Laser Engineering, 2015, 44(4): 1158-1163. (in Chinese)
[77] Liu R Q, Chen X M, Zhao J Q. Applied research of diffractive optical elements in IR imaging systems [J]. Infrared Technology, 2009, 31(6): 327-330. (in Chinese)
[78] Cheng X M. The design fabrication and testing of diffractive element in the infrared optical lens[D]. Chengdu: Institute of Optics and Electrics, Chinese Academy of Sciences, 2015. (in Chinese)
[79] Ma T. Design theory of multilayer diffractive optical element and Iits application in hybrid optical system[D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
[80] Swanson G J, Veldkamp W B. Infrared applications of diffractive optical elements[C]//Holographic optics: Design and Applications, 1988: 155-162.
[81] Stone T, George N. Hybrid diffractive-refractive lenses and achromats [J]. Applied Optics, 1988, 27(14): 2960-2971. doi:  10.1364/AO.27.002960
[82] Buralli D A, Morris G M, Rogers J R. Optical performance of holographic kinoforms [J]. Applied Optics, 1989, 28(5): 976-983. doi:  10.1364/AO.28.000976
[83] Soskind Y. Diffractive optics technologies in infrared sys-tems[C]//Infrared Technology and Applications XLI, 2015: 465-472.
[84] Zhao X, Guo Y, Zhang P, et al. Design of infrared dual-band optical system with double-layer diffraction optical element [J]. Electronics Optics & Control, 2017, 24(10): 85-89. (in Chinese)
[85] Zhang B, Cui Q F, Piao M X, et al. Design of dual-band infrared zoom lens with multilayer diffractive optical elements [J]. Applied Optics, 2019, 58(8): 2058-2067. doi:  10.1364/AO.58.002058
[86] Zhang H, Liu H, Xu W B, et al. Large aperture diffractive optical telescope: A review [J]. Optics & Laser Technology, 2020, 130: 106356. doi:  10.1016/j.optlastec.2020.106356
[87] Feng B, Yang M. Athermalization design for infrared dual-band double-layer harmonic diffractive optical system [J]. Optik-International Journal for Light and Electron Optics, 2021, 227: 166097. doi:  10.1016/j.ijleo.2020.166097
[88] Li M Z, Hou X, Zhao W C, et al. Current situation and development trend of aspheric optical surface defect detection technology (invited) [J]. Infrared and Laser Engineering, 2022, 51(9): 20220457. (in Chinese) doi:  10.3788/IRLA20220457
[89] Liu H, Lu Z, Li F. Using diffractive optical element and Zygo interferometer to test large-aperture convex surface [J]. Optics & Laser Technology, 2005, 37(8): 642-646. doi:  10.1016/j.optlastec.2004.09.001
[90] Myller K, Juuti M, Peiponen K-E, et al. Quality inspection of metal surfaces by diffractive optical element-based glossmeter [J]. Precision Engineering, 2006, 30(4): 443-447. doi:  10.1016/j.precisioneng.2005.11.009
[91] Rastogi V, Agarwal S, Kumar V, et al. Holographic optical element based digital holographic interferometer for the study of macro flames, micro flames and their temperature instability [J]. Optics and Lasers in Engineering, 2019, 122: 29-36. doi:  10.1016/j.optlaseng.2019.05.021
[92] Shealy D L, Hoffnagle J A. Laser beam shaping profiles and propagation [J]. Applied Optics, 2006, 45(21): 5118-5131. doi:  10.1364/AO.45.005118
[93] Shealy D L. Historical perspective of laser beam shaping[C]//Laser Beam Shaping III, 2002: 28-47.
[94] Lin Y, Hu J S. Laser beam shaping techniques [J]. Laser Journal, 2008, 29(6): 1-4. (in Chinese)
[95] Račiukaitis G, Stankevičius E, Gečys P, et al. Laser processing by using diffractive optical laser beam shaping technique [J]. Journal of Laser Micro/Nanoengineering, 2011, 6(1): 37-43. doi:  10.2961/jlmn.2011.01.0009
[96] Hilton P A, Lloyd D, Tyrer J R. Use of a diffractive optic for high power laser cutting [J]. Journal of Laser Applications, 2016, 28(1): 012014. doi:  10.2351/1.4938279
[97] Kang S, Shin J. Laser beam oscillation welding of aluminum alloy using the spatially modulated beam by diffractive optical element (DOE) [J]. Journal of Manufacturing Processes, 2021, 66: 387-396. doi:  10.1016/j.jmapro.2021.04.029
[98] Katz S, Kaplan N, Grossinger I. Using diffractive optical elements: DOEs for beam shaping–fundamentals and applications [J]. Optik & Photonik, 2018, 13(4): 83-86. doi:  10.1002/opph.201870416
[99] Yang X J, Wang Z Q, Fu R L. Hybrid diffractive-refractive 67-diagonal field of view optical see-through head-mounted display [J]. Optik, 2005, 116(7): 351-355. doi:  10.1016/j.ijleo.2005.02.006
[100] Yang L L. Studies on diffraction efficiency of multilayer diffractive optical elements[D]. Changchun: Changchun University of Science and Technology, 2010. (in Chinese)
[101] Mi L, Chen C P, Lu Y, et al. Design of lensless retinal scanning display with diffractive optical element [J]. Optics Express, 2019, 27(15): 20493-20507. doi:  10.1364/OE.27.020493
[102] Hua J, Yi D, Qiao W, et al. Multiview holographic 3D display based on blazed fresnel DOE [J]. Optics Communications, 2020, 472: 125829. doi:  10.1016/j.optcom.2020.125829
[103] Xie H, Huo F R, Xue C X. Optimal design and analysis of a new coupled grating structure for head-mounted display [J]. Acta Optica Sinica, 2022, 42(14): 1405001. (in Chinese) doi:  10.3788/AOS202242.1405001