[1] Lillie C F. Large deployable telescopes for future space observatories [C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II, 2005, 5899: 58990D.
[2] Zhang Xuejun, Fan Yanchao, Bao He, et al. Applications and development of ultra large aperture space optical remote sensor [J]. Optics and Precision Engineering, 2016, 24(11): 2613-2626. (in Chinese) doi:  10.3788/OPE.20162411.2613
[3] Greenhouse M A. The JWST science instrument payload: mission context and status [C]//UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VI, 2013, 8860: 886004.
[4] Sabelhaus P A, Decker J E. An overview of the James Webb Space Telescope (JWST) project [C]//Optical, Infrared, and Millimeter Space Telescopes, 2004, 5487: 550-563.
[5] Clampin M. Status of the James Webb space telescope observatory [C]//Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, 2012, 8442: 84422A.
[6] Reynolds P, Atkinson C, Gliman L. Design and development of the primary and secondary mirror deployment systems for the cryogenic JWST [C]//37th Aerospace Mechanisms Symposium, 2004: 29-44.
[7] Acton D S, Knight J S, Contos A, et al. Wavefront sensing and controls for the James Webb space telescope [C]//Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, 2012, 8442: 84422H.
[8] Kimble R A, Bowers C W, McElwain M W, et al. Completion of the JWST spacecraft/sunshield and telescope/instrument elements [C]//American Astronomical Society Meeting, 2020, 235: 372-10.
[9] Clampin M. Overview of the James Webb space telescope observatory [C]//UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts V, 2011, 8146: 814605.
[10] Arenberg J, Flynn J, Cohen A, et al. Status of the JWST sunshield and spacecraft [C]//Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 2016, 9904: 990405.
[11] The LUVOIR Team. The LUVOIR mission concept study final report [R]. Washington: National Aeronautics and Space Administration, 2019.
[12] Park S, Eisenhower M J, Bolcar M R, et al. LUVOIR thermal architecture overview and enabling technologies for picometer-scale WFE stability [C]//2019 IEEE Aerospace Conference, 2019: 1-13.
[13] Hylan J E, Bolcar M R, Crooke J, et al. The large UV/Optical/lnfrared surveyor (LUVOIR): decadal mission concept study update [C]//2019 IEEE Aerospace Conference, 2019: 1-15.
[14] Allen M R, Kim J J, Agrawal B N. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration [J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, 2(2): 029001. doi:  10.1117/1.JATIS.2.2.029001
[15] Watson J J. Correcting surface figure error in imaging satellites using a deformable mirror[D]. Monterey: Naval Postgraduate School, 2013.
[16] Mesrine M, Thomas E, Garin S, et al. High resolution earth observation from geostationary orbit by optical aperture synthesys [C]//International Conference on Space Optics, 2006, 10567: 105670B.
[17] Aguirre M, Bézy J L. ESA activities related to high resolution imaging from GEO [C]//HR GEO User Consultation Workshop, 2010.
[18] Bello U D, Massotti L. ESA studies on HR imaging from geostationary satellites [C]//2nd GEO-HR User Consultation Workshop, 2013.
[19] Decourt R. Hoasis: Surveillance à haute résolution depuis l’orbite géostationnaire [EB/OL]. (2013-08-02) [2021-01-01] http://www.futura-sciences.com/magazines/espace/infos/actu/d/astronautique-hoasis-surveillance-haute-resolution-depuis-orbite-geostationnaire-48077/.
[20] Behar-Lafenetre S. Active optics in deployable systems for future EO and science missions[R]. Cannes: Thales Alenia Space France SAS, 2020.
[21] Marone-Hitz P. Modeling of spatial structures deployed by tape springs: Towards a home-made modeling tool based on rod models with flexible cross sections and asymptotic numerical methods[D]. Marseille: Ecole Centrale Marseille, 2014.
[22] Picault E, Bourgeois S, Cochelin B, et al. A new rod model for the folding and deployment of tape springs with highly deformable cross-sections [C]//7th International Conference on Computational Mechanics for Spatial Structures, 2012: 2-83.
[23] Picault E, Bourgeois S, Cochelin B, et al. On the folding and deployment of tape springs: A large displacements and large rotations rod model with highly flexible thin-walled cross-sections [C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012: 1956.
[24] Dolkens D, Kuiper J M. A deployable telescope for sub-meter resolutions from microsatellite platforms [C]//International Conference on Space Optics, 2014: 10563.
[25] Dolkens D, Marrewijk G V, Kuiper H. Active correction system of a deployable telescope for Earth observation [C]//International Conference on Space Optics, 2018, 11180: 111800A.
[26] Dolkens D, Kuiper H, Corbacho V V. The deployable telescope: A cutting-edge solution for high spatial and temporal resolved earth observation [J]. Advanced Optical Technologies, 2018, 7(6): 365-376. doi:  10.1515/aot-2018-0043
[27] Arink J W. Thermal-mechanical design of a baffle for the deployable space telescope[D]. Delft: Delft University of Technology, 2019.
[28] Schwartz N, Pearson D, Todd S, et al. A segmented deployable primary mirror for earth observation from a CubeSat platform [C]//29th Annual AIAA/USU Conference on Small Satellites, 2016.
[29] Schwartz N, Pearson D, Todd S, et al. Laboratory demonstration of an active optics system for high-resolution deployable CubeSat [C]//Small Satellites, System & Services Symposium, 2018.
[30] Schwartz N, Brzozowski W, Milanova M, et al. High-resolution deployable CubeSat prototype [C]//Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave, 2020, 11443: 1144331.
[31] Silver M J, Echter M A, Reid B M, et al. Precision high strain composite hinges for the deployable in-space coherent imaging telescope [C]//3rd AIAA Spacecraft Structures Conference, 2016: 0969.
[32] Silver M, Echter M. Precision high-strain composite hinges for deployable space telescopes [C]//44th Aerospace Mechanisms Symposium, 2018: 417.
[33] Echter M A, Silver M J, D'Elia E, et al. Recent developments in precision high strain composite hinges for deployable space telescopes [C]//AIAA Spacecraft Structures Conference, 2018: 0939.
[34] Echter M A, Gillmer S R, Silver M J, et al. A multifunctional high strain composite (HSC) hinge for deployable in-space optomechanics [J]. Smart Materials and Structures, 2020, 29(10): 105010. doi:  10.1088/1361-665X/abad4d
[35] Stoll E, Mindermann P, Grzesik B, et al. Oculus-Cube – a demonstrator of optical coatings for ultra lightweight robust spacecraft structures [C]//11th IAA Symposium on Small Satellites for Earth Observation, 2017.
[36] Grzesik B, Mindermann P, Linke S, et al. Alignment mechanism and system concept of a scalable deployable ultra-lightweight space telescope for a 1U CubeSat demonstrator [C]//68th International Astronautical Congress (IAC), 2017.
[37] Grzesik B, Stoll E, De Wit J, et al. Manufacturing and preliminary testing of a scalable deployable ultra-lightweight space telescope[C]//Small Satellites, System & Services Symposium, 2018.
[38] Champagne J, Crowther B, Newswander T. Deployable mirror for enhanced imagery suitable for small satellite applications [C]//27th Annual AIAA/USU Conference on Small Satellites, 2013.
[39] Champagne J, Hansen S, Newswander T, et al. CubeSat image resolution capabilities with deployable optics and current imaging technology [C]//28th Annual AIAA/USU Conference on Small Satellites, 2014.
[40] Łapczyński R. Real-time earth-observation constellation (REC) [C]//ITU Regional Innovation Forum for Europe on Bridging the Digital Innovation Divide, 2018.
[41] Graja A, Ćwikła M, Kwapisz P. DeploScope – A modular deployable CubeSat telescope [C]//2018 International Young Scientists and Students Workshop, 2018: 18-24.
[42] Tanaka T, Sato Y, Kusakawa Y, et al. The operation results of earth image acquisition using extensible flexible optical telescope of "PRISM" [C]//27th Interlational Symposium on Space Technology and Science, 2009.
[43] Sato Y, Kim S K, Kusakawa Y, et al. Extensible flexible optical system for nano-scale remote sensing satellite "PRISM" [C]//Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, 7: Tm_13-18.
[44] Inamori T, Shimizu K, Mikawa Y, et al. Attitude stabilization for the nano remote sensing satellite PRISM [J]. Journal of Aerospace Engineering, 2013, 26(3): 594-602. doi:  10.1061/(ASCE)AS.1943-5525.0000170
[45] Komatsu M, Nakasuka S. University of Tokyo nano satellite project "PRISM"[C]//Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, 7: Tf_19-24.
[46] Agasid E, Rademacher A, McCullar Ml, et al. Study to determine the feasibility of a earth observing telescope payload for a 6U nano satellite[R]. Moffett Field: Ames Research Center, 2010.
[47] Agasid E, Ennico-Smith K, Rademacher A. Collapsible space telescope (CST) for nanosatellite imaging and observation [C]//27th Annual AIAA/USU Conference on Small Satellites, 2013.
[48] Gooding D, Richardson G, Haslehurst A, et al. A novel deployable telescope to facilitate a low-cost <1 m GSD video rapid-revisit small satellite constellation [C]//International Conference on Space Optics, 2018: 11180.
[49] Shore J, Blows R, Viquerat A, et al. A new generation of deployable optics for Earth observation using small satellites [C]//18th European Space Mechanisms and Tribology Symposium, 2019: 1-8.
[50] Shore J, Blows R, Viquerat A, et al. A novel deployable telescope for earth observation [C]//AIAA Scitech 2021 Forum, 2021: 1034.
[51] Aglietti G S, Honeth M, Gensemer S, et al. Deployable optics for CubeSats [C]//34th Annual AIAA/USU Conference on Small Satellites, 2020.
[52] Yalagach A, Aglietti G, Honeth M, et al. Deployable barrel for a CubeSat’s optical payload [C]//AIAA Scitech 2021 Forum, 2021: 1791.
[53] Jeong S, Choi J, Lee D, et al. The establishment of requirement and kinematic analysis of mechanism for deployable optical structure [J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2014, 42(8): 701-706.
[54] Choi J, Lee D, Hwang K, et al. A mechanism for a deployable optical structure of a small satellite [J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(12): 2537-2543. doi:  10.1007/s12541-015-0325-5
[55] Choi J, Lee D, Hwang K, et al. Design, fabrication, and evaluation of a passive deployment mechanism for deployable space telescope [J]. Advances in Mechanical Engineering, 2019, 11(5): 1687814019852258.
[56] Dong Jihong, Chen Xiaowei. Analysis on design strategies of lager-aperture deployable primary mirror of space telescopes [J]. China Mechanical Engineering, 2012, 23(14): 1667-1670. (in Chinese)
[57] Zuo Yudi, Jin Guang, Xie Xiaoguang, et al. Design of the spontaneous deployable mechanism for space telescope based on lenticular tape springs [J]. Infrared and Laser Engineering, 2017, 46(5): 0518002. (in Chinese) doi:  10.3788/IRLA201746.0518002
[58] Yang Huisheng, Zhang Xuejun, Li Zhilai, et al. Study of the impact of co-phasing errors for segmented primary mirror using nonlinear analysis [J]. Optik, 2019, 191: 80-88. doi:  10.1016/j.ijleo.2019.05.104
[59] Yang Huisheng, Zhang Xuejun, Bao He, et al. Influence of random aspheric parameter errors on the wavefront deformation for segmented primary mirror and its correction [J]. Optik, 2020, 200: 163406. doi:  10.1016/j.ijleo.2019.163406
[60] Yang Huisheng, Zhang Xuejun, Li Zhilai, et al. Impact of random segment pose errors for deployable telescope and its tolerance allocation [J]. Optics Communications, 2020, 456: 124549. doi:  10.1016/j.optcom.2019.124549
[61] Yang Huisheng, Zhang Xuejun, Liu Baixu, et al. Large rigid-body displacement parameters extraction of segmented mirror in pose co-phasing adjustment simulation analysis using constrained optimization method [J]. Optik, 2020, 224: 165748. doi:  10.1016/j.ijleo.2020.165748
[62] Yang Huisheng. Research on key technologies of ultra large aperture deployable primary mirror system [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, 2019. (in Chinese)
[63] Zhang Long. Research on optical co-phasing detection technology of segmented telescope [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, 2020. (in Chinese)
[64] Ni Yanshuo, Zhang Shuyang, Liu Dong, et al. A four-bar linkage designed to accurately deploy the secondary mirror of a large space-based optical remote sensing system [C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2019: 1073-1078.
[65] Zhang Shuyang, Ni Yanshuo, Pan Bo, et al. A high-accuracy deployment mechanism designing based on Kelvin couplings with active locking devices [C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2019: 1096-1101.
[66] Feng Xuegui, Li Chuang, Ren Guorui. Medium-sized aperture deployable telescope for microsatellite application [C]//International Symposium on Photoelectronic Detection and Imaging, 2011, 8196: 81961V.
[67] Li Chuang, Feng Xuegui. Deployment precision measurement modeling of a deployable space telescope based on tape springs [C]//Seventh International Symposium on Precision Engineering Measurements and Instrumentation, 2011, 8321: 83212R.
[68] Zhao Chao. Research on self-deployable structure of secondary mirror of space telescope [D]. Xi’an: Xi'an Institute of Optics and Precision Mechanics, 2014. (in Chinese)
[69] Zhong Peifeng. Research on the deployment technology to the secondary mirror of the deployable lightweight space telescope [D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, 2017. (in Chinese)
[70] Lei Wang, Li Chuang, Zhong Peifeng, et al. Realization and testing of a deployable space telescope based on tape springs [C]//Pacific Rim Laser Damage, 2017, 10339: 1033920.
[71] Zhou Nan. Research on six degrees of freedom adjustment of secondary mirror in space telescopes [D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, 2015. (in Chinese)
[72] Feng Xuegui. Research on the measurement of alignment of the deployable telescope secondary mirror [D]. Xi’an: Xi'an Institute of Optics and Precision Mechanics, 2012. (in Chinese)
[73] Wang Zhenkun, Zhao Zhicheng, Liu Li. Optimization of structural parameters of sparse apertures with four rectangular sub-apertures [C]//AOPC 2019: Space Optics, Telescopes, and Instrumentation, 2019, 11341: 1134113.
[74] Wang Zhenkun. Design of deployable high-resolution camera for earth observation 3U CubeSat [D]. Suzhou: Soochow University, 2020. (in Chinese)
[75] Stahl H P. Design study of 8 meter monolithic mirror UV/optical space telescope [C]//Space Telescopes and Instrumentation, 2008, 7010: 701022.
[76] Chonis T S, Gallagher B B, Knight J S, et al. Characterization and calibration of the James Webb space telescope mirror actuators fine stage motion [C]//Space Telescopes and Instrumentation, 2018, 10698: 106983S.
[77] Kim J J, Mueller M, Martinez T, et al. Impact of large field angles on the requirements for deformable mirror in imaging satellites [J]. Acta Astronautica, 2018, 145: 44-50. doi:  10.1016/j.actaastro.2018.01.001
[78] Saif B, Chaney D, Greenfield P, et al. Measurement of picometer-scale mirror dynamics [J]. Applied Optics, 2017, 56(23): 6457-6465. doi:  10.1364/AO.56.006457
[79] Tyson R K. Principles of Adaptive Optics[M]. 3rd ed. USA: CRC Press, 2010.
[80] Nagashima M, Agrawal B N. Active control of adaptive optics system in a large segmented mirror telescope [J]. International Journal of Systems Science, 2014, 45(2): 159-175. doi:  10.1080/00207721.2012.683835
[81] Liu Tao. An overview of development of foreign large aperture reflection imaging technology on geostationary orbit [J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5): 1-9. (in Chinese)
[82] Looysen M W. Combined integral and robust control of the segmented mirror telescope[D]. Monterey: Naval Postgraduate School, 2009.
[83] Lake M S, Hachkowski M R. Design of mechanisms for deployable, optical instruments: guidelines for reducing hysteresis[R]. Hampton: Langley Research Center, 2000.
[84] Corbacho V V, Kuiper H, Gill E. Review on thermal and mechanical challenges in the development of deployable space optics [J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6(1): 010902.
[85] Yang Shuang, Du Changshuai, Yang Xianwei, et al. Thermal design of space solar telescope [J]. Infrared and Laser Engineering, 2021, 50(4): 20200294. (in Chinese)
[86] Jiang Fan, Wu Qingwen, Liu Ju, et al. Thermal design of lightweight space remote sensor integrated with satellite in low earth orbit [J]. Chinese Optics, 2013, 6(2): 237-243. (in Chinese)