[1] Churnside J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2013, 53(5):051405.
[2] Xu J. Underwater wireless optical communication:why, what, and how?[J]. Chinese Optics Letters, 2019, 17(10):100007.
[3] Qu F, Wang Z, Yang L, et al. A journey toward modeling and resolving doppler in underwater acoustic communications[J]. IEEE Communications Magazine, 2016, 54(2):49-55.
[4] Liu D, Xu P, Zhou Y, et al. Lidar remote sensing of seawater optical properties:experiment and monte carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9489-9498.
[5] Abualhin K. Mapping of underwater seabed morphology of the gaza strip coastal zone using remote sensing technique[J]. Earth Sciences Research Journal, 2016, 20(2):1-7.
[6] Kerfoot W C, Hobmeier M M, Green S A, et al. Coastal ecosystem investigations with LiDAR (Light Detection and Ranging) and bottom reflectance:lake superior reef threatened by migrating tailings[J]. Remote Sensing, 2019, 11(9):1076.
[7] Su D, Yang F, Ma Y, et al. Classification of coral reefs in the south china sea by combining Airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2):815-828.
[8] Alem N, Pellen F, Le Jeune B. New microwave modulation LIDAR scheme for naval mine detection[C]//Electro-Optical Remote Sensing XI. International Society for Optics and Photonics, 2017:1043403.
[9] Filisetti A, Marouchos A, Martini A, et al. Developments and applications of underwater LiDAR systems in support of ocean science[C]//OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018:1-10.
[10] Liu Bingyi, Li Ruiqi, Yang Qian, et al. Estimation of global detection depth of spaceborne oceanographic lidar in blue-green spectral region[J]. Infrared and Laser Engineering, 2019, 48(1):128-133. (in Chinese)
[11] Ottaviani M, Foster R, Gilerson A, et al. Airborne and shipborne polarimetric measurements over open ocean and coastal waters:intercomparisons and implications for spaceborne observations[J]. Remote Sensing of Environment, 2018, 206:375-390.
[12] Zeng Z, Fu S, Zhang H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1):204-238.
[13] Wang J, Lu C, Li S, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9):12171-12181.
[14] Hong X, Fei C, Zhang G, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3):558-561.
[15] Liu X, Yi S, Zhou X, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22):27937-27947.
[16] Strand M P. Imaging model for underwater range-gated imaging systems[C]//Underwater Imaging, Photography, and Visibility. International Society for Optics and Photonics, 1991:151-160.
[17] Ooi B S, Sun X, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Optical Fiber Communication Conference. Optical Society of America, 2019:M3I. 1.
[18] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4):513-521.
[19] Massot-Campos M, Oliver-Codina G. Optical sensors and methods for underwater 3D reconstruction[J]. Sensors, 2015, 15(12):31525-31557.
[20] Song Hong, Zhang Yunfei, Wu Chaopeng, et al. Calibration method of underwater phase laser ranging[J]. Infrared and Laser Engineering, 2019, 48(4):0406008. (in Chinese)
[21] Mullen L J, Contarino V M. Hybrid lidar-radar:seeing through the scatter[J]. IEEE Microwave Magazine, 2000, 1(3):42-48.
[22] Zha B-T, Yuan H-I, Tan Y-Y. Ranging precision for underwater laser proximity pulsed laser target detection[J]. Optics Communications, 2019, 431:81-87.
[23] Cao Fengmei, Jin Weiqi, Huang Youwei, et al. Review of underwater opto-electrical imaging technology and equipment (I)-Underwater laser range-gated Imaging technology[J]. Infrared Technology, 2011, 33(2):63-69. (in Chinese)
[24] McLean E, Burris H, Strand M. Short-pulse range-gated optical imaging in turbid water[J]. Applied Optics, 1995, 34(21):4343-4351.
[25] He D-M, Seet G G. Divergent-beam lidar imaging in turbid water[J]. Optics and Lasers in Engineering, 2004, 41(1):217-231.
[26] Busck J. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering, 2005, 44(11):116001.
[27] Wang Yinfei, Zhang Xiaohui, Zhong Wei, et al. Contrast Signal-to-noise model of underwater full range-gated imaging radar based on high-repetion-rate pulse laser[J]. Chinese Journl of Lasers, 2019, 46(7):21-28.(in Chinese)
[28] Jin D, Ji C, Chu X, et al. Simulation analysis of signal-to-noise ratio of the underwater range gating imaging system[C]//Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 2019:1102357.
[29] Zhuang B, Li C, Wu N, et al. First demonstration of 400 Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2017:1-2.
[30] Li J, Huang Z, Liu X, et al. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems[J]. Optics Express, 2015, 23(1):611-619.
[31] Li X, Chen H, Li S, et al. Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC[C]//2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 2017:616-621.
[32] Fei C, Hong X, Zhang G, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26):34060-34069.
[33] Moore K D, Jaffe J S, Ochoa B L. Development of a new underwater bathymetric laser imaging system:L-bath[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(8):1106-1117.
[34] Jantzi A, Rumbaugh L, Jemison W. Spatial coherence filtering for scatter rejection in underwater laser systems[C]//Ocean Sensing and Monitoring XI. International Society for Optics and Photonics, 2019:1101406.
[35] Tang S, Dong Y, Zhang X. On link misalignment for underwater wireless optical communications[J]. IEEE Communications Letters, 2012, 10(16):1688-1690.
[36] Kong M, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426:94-98.
[37] Kong M, Lin J, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24):34542-34551.
[38] Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication:state-of-the-art, opportunities, challenges, and trends[J]. Chinese Optics Letters, 2019, 17(10):100002.
[39] Al-Rubaiai M, Tan X. Design and development of an LED-based optical communication system with active alignment control[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2016:160-165.
[40] Cai C, Zhao Y, Zhang J, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Optical Fiber Communication Conference. Optical Society of America, 2019:M3I. 4.
[41] Brandl P, Schidl S, Polzer A, et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013, 25(15):1428-1431.
[42] Duan X, Song D, Zou J. Steering Co-centered and Co-directional optical and acoustic beams with a water-immersible MEMS scanning mirror for underwater ranging and communication[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019:6582-6587.
[43] Zhang H, Dong Y, Hui L. On capacity of downlink underwater wireless optical MIMO systems with random sea surface[J]. IEEE Communications Letters, 2015, 19(12):2166-2169.
[44] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity:MIMO scheme[J]. IEEE Transactions on Communications, 2016, 65(3):1176-1192.
[45] Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications:Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9):8223-8237.
[46] Song Y, Lu W, Sun B, et al. Experimental demonstration of MIMO-OFDM underwater wireless optical communication[J]. Optics Communications, 2017, 403:205-210.
[47] Chen X, Lyu W, Yu C, et al. Diversity-reception UWOC system using solar panel array and maximum ratio combining[J]. Optics Express, 2019, 27(23):34284-34297.
[48] Nevis A J, Hilton R J, Taylor Jr J S, et al. Advantages of three-dimensional electro-optic imaging sensors[C]//Detection and Remediation Technologies for Mines and Minelike Targets VIII. International Society for Optics and Photonics, 2003:225-237.
[49] Sun Jianfeng, Gao Jian, Wei Jingsong, et al. Research development of under-water detection imaging based on streak tube imaging lidar[J]. Infrared and Laser Engineering, 2010, 39(5):811-814. (in Chinese)
[50] McLean J W. High-resolution 3D underwater imaging[C]//Airborne and in-Water Underwater Imaging. International Society for Optics and Photonics, 1999:10-19.
[51] Gleckler A D. Multiple-slit streak tube imaging lidar (MS-STIL) applications[C]//Laser Radar Technology and Applications V. International Society for Optics and Photonics, 2000:266-278.
[52] Ge Mingda, Sun Jianfeng, Wang Tianjiao, et al. Denoising methods for streak tube imaging lidar range imagebased on contrast-modulation method[J]. Infrared and Laser Engineering, 2013, 42(6):1448-1452. (in Chinese)
[53] Cui Z, Tian Z, Zhang Y, et al. Research on the underwater target imaging based on the streak tube laser lidar[C]//Young Scientists Forum 2017. International Society for Optics and Photonics, 2018:107103G.
[54] Hui D, Tian J, Lu Y, et al. Streak tube with large work area and small size used in lidar detection system[J]. Acta Optica Sinica, 2015, 35(12):318-324. (in Chinese)
[55] Wang C, Yu H-Y, Zhu Y-J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Optics Express, 2017, 25(23):28783-28793.
[56] Shen J, Wang J, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18):23565-23571.
[57] Kong M, Chen Y, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3):3087-3097.
[58] Hamza T, Khalighi M-A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2016:1-5.
[59] Khalighi M-A, Hamza T, Bourennane S, et al. Underwater wireless optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4):1-10.
[60] Léon P, Roland F, Brignone L, et al. A new underwater optical modem based on highly sensitive Silicon Photomultipliers[C]//OCEANS 2017-Aberdeen. IEEE, 2017:1-6.
[61] Shen J, Wang J, Yu C, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438:78-82.
[62] Nie Ruijie, Xu Zhiyong, Zhang Qiheng, et al. Model of electrical characteristics of SiPM array and optimization of front-end design for three-dimensional depth sounder[J]. Optics and Precision Engineering, 2012, 20(8):1661-1668. (in Chinese)