[1] Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light: The evolution of whole-body photonic imaging [J]. Nature Biotechnology, 2005, 23(3): 313-320. doi:  10.1038/nbt1074
[2] Wang L V, Wu H. Biomedical Optics: Principles and Imaging[M]. New York: John Wiley & Sons, 2012.
[3] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media [J]. Optics Letters, 2007, 32(16): 2309-2311. doi:  10.1364/OL.32.002309
[4] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media [J]. Optics Communications, 2008, 281(11): 3071-3080. doi:  10.1016/j.optcom.2008.02.022
[5] Vellekoop I M. Feedback-based wavefront shaping [J]. Optics Express, 2015, 23(9): 12189-12206. doi:  10.1364/OE.23.012189
[6] Conkey D B, Brown A N, Caravaca-Aguirre A M, et al. Genetic algorithm optimization for focusing through turbid media in noisy environments [J]. Optics Express, 2012, 20(5): 4840-4849. doi:  10.1364/OE.20.004840
[7] Huang H L, Chen Z Y, Sun C Z, et al. Light focusing through scattering media by particle swarm optimization [J]. Chinese Physics Letters, 2015, 32(10): 104202. doi:  10.1088/0256-307X/32/10/104202
[8] Fang L, Zuo H, Yang Z, et al. Particle swarm optimization to focus coherent light through disordered media [J]. Applied Physics B, 2018, 124(8): 1-9.
[9] Fang L, Zhang X, Zuo H, et al. Focusing light through random scattering media by four-element division algorithm [J]. Optics Communications, 2018, 407: 301-310. doi:  10.1016/j.optcom.2017.08.062
[10] Wu Y, Zhang X, Yan H. Focusing light through scattering media using the harmony search algorithm for phase optimization of wavefront shaping [J]. Optik, 2018, 158: 558-564. doi:  10.1016/j.ijleo.2017.12.196
[11] Wu Z, Luo J, Feng Y, et al. Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm [J]. Optics Express, 2019, 27(4): 5570-5580. doi:  10.1364/OE.27.005570
[12] Yang J, He Q, Liu L, et al. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device [J]. Light: Science & Applications, 2021, 10: 149.
[13] Zhao Y, He Q, Li S, et al. Gradient-assisted focusing light through scattering media [J]. Optics Letters, 2021, 46(7): 1518-1521. doi:  10.1364/OL.417606
[14] Woo C M, Li H, Zhao Q, et al. Dynamic mutation enhanced particle swarm optimization for optical wavefront shaping [J]. Optics Express, 2021, 29(12): 18420-18426. doi:  10.1364/OE.425615
[15] Zhao Y, Ding Y. Multi-point controllable wavefront shaping based on superpixel method [J]. Acta Photonica Sinica, 2021, 50(9): 0929002. (in Chinese)
[16] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media [J]. Physical Review Letters, 2010, 104(10): 100601. doi:  10.1103/PhysRevLett.104.100601
[17] Popoff S M, Lerosey G, Fink M, et al. Controlling light through optical disordered media: transmission matrix approach [J]. New Journal of Physics, 2011, 13(12): 123021. doi:  10.1088/1367-2630/13/12/123021
[18] Chaigne T, Katz O, Boccara A C, et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix [J]. Nature Photonics, 2014, 8(1): 58-64. doi:  10.1038/nphoton.2013.307
[19] Kim M, Choi W, Choi Y, et al. Transmission matrix of a scattering medium and its applications in biophotonics [J]. Optics Express, 2015, 23(10): 12648-12668. doi:  10.1364/OE.23.012648
[20] Andreoli D, Volpe G, Popoff S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix [J]. Scientific Reports, 2015, 5(1): 1-8. doi:  10.9734/JSRR/2015/14076
[21] Xu J, Ruan H, Liu Y, et al. Focusing light through scattering media by transmission matrix inversion [J]. Optics Express, 2017, 25(22): 27234-27246. doi:  10.1364/OE.25.027234
[22] Wang J, Li W, Liu J, et al. Measuring optical transmission matrix based on three steps phase shift interferometry and focusing [J]. Chinese Journal of Lasers, 2018, 45(8): 0804007. (in Chinese)
[23] Drémeau A, Liutkus A, Martina D, et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques [J]. Optics Express, 2015, 23(9): 11898-11911. doi:  10.1364/OE.23.011898
[24] Zhao T, Deng L, Wang W, et al. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber [J]. Optics Express, 2018, 26(16): 20368-20378. doi:  10.1364/OE.26.020368
[25] N’Gom M, Norris T B, Michielssen E, et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system [J]. Optics Letters, 2018, 43(3): 419-422. doi:  10.1364/OL.43.000419
[26] Deng L, Yan J D, Elson D S, et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system [J]. Optics Express, 2018, 26(14): 18436-18447. doi:  10.1364/OE.26.018436
[27] Huang G, Wu D, Luo J, et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter [J]. Optics Express, 2020, 28(7): 9487-9500. doi:  10.1364/OE.389133
[28] Huang G, Wu D, Luo J, et al. Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices [J]. Photonics Research, 2021, 9(1): 34-42. doi:  10.1364/PRJ.406010
[29] Wang Z, Wu D, Huang G, et al. Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system [J]. Optics Letters, 2021, 46(22): 5542-5545. doi:  10.1364/OL.437849
[30] Yariv A, AuYeung J, Fekete D, et al. Image phase compensation and real-time holography by four-wave mixing in optical fibers [J]. Applied Physics Letters, 1978, 32(10): 635-637. doi:  10.1063/1.89876
[31] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples [J]. Nature Photonics, 2008, 2(2): 110-115. doi:  10.1038/nphoton.2007.297
[32] Li C. Optical phase conjugation (OPC) for focusing light through/inside biological tissue [J]. Infrared and Laser Engineering, 2019, 48(7): 0702001. (in Chinese) doi:  10.3788/IRLA201948.0702001
[33] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation [J]. Journal of Biomedical Optics, 2016, 21(8): 085001. doi:  10.1117/1.JBO.21.8.085001
[34] Shang Q. Optical phase conjugation and four-wave mixing [J]. Optics & Optoelectronic Technology, 2003, 1(3): 9-11. doi:  10.3969/j.issn.1672-3392.2003.03.003
[35] Liu Y, Lai P, Ma C, et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light [J]. Nature Communications, 2015, 6(1): 1-9. doi:  10.1038/ncomms6904
[36] He G S. Optical phase conjugation: principles, techniques, and applications [J]. Progress in Quantum Electronics, 2002, 26(3): 131-191. doi:  10.1016/S0079-6727(02)00004-6
[37] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation [J]. Optics Express, 2010, 18(4): 3444-3455. doi:  10.1364/OE.18.003444
[38] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation [J]. Optics Express, 2014, 22(12): 14054-14071. doi:  10.1364/OE.22.014054
[39] Azimipour M, Atry F, Pashaie R. Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials [J]. Applied Optics, 2016, 55(11): 2873-2880. doi:  10.1364/AO.55.002873
[40] Hemphill A S, Shen Y, Hwang J, et al. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials [J]. Journal of Biomedical Optics, 2018, 24(3): 031004.
[41] Yu Y W, Sun C C, Liu X C, et al. Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium [J]. OSA Continuum, 2019, 2(3): 703-714. doi:  10.1364/OSAC.2.000703
[42] Mididoddi C K, Lennon R A, Li S, et al. High-fidelity off-axis digital optical phase conjugation with transmission matrix assisted calibration [J]. Optics Express, 2020, 28(23): 34692-34705. doi:  10.1364/OE.409226
[43] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue [J]. Nature Photonics, 2015, 9(9): 563-571. doi:  10.1038/nphoton.2015.140
[44] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue [J]. Applied Physics Letters, 2012, 101(8): 081108. doi:  10.1063/1.4745775
[45] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle [J]. Optics Express, 2010, 18(20): 20723-20731. doi:  10.1364/OE.18.020723
[46] Hsieh C L, Pu Y, Grange R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media [J]. Optics Express, 2010, 18(12): 12283-12290. doi:  10.1364/OE.18.012283
[47] Ruan H, Haber T, Liu Y, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping [J]. Optica, 2017, 4(11): 1337-1343. doi:  10.1364/OPTICA.4.001337
[48] Yu Z, Huangfu J, Zhao F, et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media [J]. Scientific Reports, 2018, 8(1): 1-8.
[49] Yang J, Li L, Shemetov A A, et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star [J]. Science Advances, 2019, 5(12): eaay1211. doi:  10.1126/sciadv.aay1211
[50] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media [J]. Nature Photonics, 2014, 8(12): 931-936. doi:  10.1038/nphoton.2014.251
[51] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples [J]. Optica, 2014, 1(4): 227-232. doi:  10.1364/OPTICA.1.000227
[52] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media [J]. Nature Photonics, 2011, 5(3): 154-157. doi:  10.1038/nphoton.2010.306
[53] Wang Y M, Judkewitz B, DiMarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light [J]. Nature Communications, 2012, 3(1): 1-8.
[54] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation [J]. Nature Photonics, 2012, 6(10): 657-661. doi:  10.1038/nphoton.2012.205
[55] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy [J]. Scientific Reports, 2012, 2(1): 1-4.
[56] Ruan H, Jang M, Judkewitz B, et al. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode [J]. Scientific Reports, 2014, 4(1): 1-7.
[57] Suzuki Y, Tay J W, Yang Q, et al. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation [J]. Optics Letters, 2014, 39(12): 3441-3444. doi:  10.1364/OL.39.003441
[58] Wang J, Liang H, Luo J, et al. Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode [J]. Optics Express, 2021, 29(19): 30961-30977. doi:  10.1364/OE.438736
[59] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE) [J]. Nature Photonics, 2013, 7(4): 300-305. doi:  10.1038/nphoton.2013.31
[60] Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded (TRUME) light [J]. arXiv preprint arXiv, 2015: 1506.05190.
[61] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation [J]. Optica, 2015, 2(8): 728-735. doi:  10.1364/OPTICA.2.000728
[62] Liu Y, Ma C, Shen Y, et al. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media [J]. Optics Letters, 2016, 41(7): 1321-1324. doi:  10.1364/OL.41.001321
[63] Hemphill A S, Shen Y, Liu Y, et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping [J]. Applied Physics Letters, 2017, 111(22): 221109. doi:  10.1063/1.5009113
[64] Liu Y, Ma C, Shen Y, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation [J]. Optica, 2017, 4(2): 280-288. doi:  10.1364/OPTICA.4.000280
[65] Lai P, Xu X, Liu H, et al. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media [J]. Journal of Biomedical Optics, 2011, 16(8): 080505. doi:  10.1117/1.3609001
[66] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light [J]. Science Advances, 2017, 3(12): eaao5520. doi:  10.1126/sciadv.aao5520
[67] Zhong T, Qiu Z, Wu Y, et al. Optically Selective Neuron Stimulation with a Wavefront Shaping‐Empowered Multimode Fiber [J]. Advanced Photonics Research, 2022, 3(3): 2100231. doi:  10.1002/adpr.202100231
[68] Liu Y, Shen Y, Ruan H, et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses [J]. Journal of Biomedical Optics, 2018, 23(1): 010501.
[69] Jang M, Ruan H, Vellekoop I M, et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin [J]. Biomedical Optics Express, 2015, 6(1): 72-85. doi:  10.1364/BOE.6.000072
[70] Jang M, Yang C, Vellekoop I M. Optical phase conjugation with less than a photon per degree of freedom [J]. Physical Review Letters, 2017, 118(9): 093902. doi:  10.1103/PhysRevLett.118.093902
[71] Ma C, Di J, Li Y, et al. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation [J]. Applied Physics Express, 2018, 11(6): 062501. doi:  10.7567/APEX.11.062501
[72] Morales-Delgado E E, Farahi S, Papadopoulos I N, et al. Delivery of focused short pulses through a multimode fiber [J]. Optics Express, 2015, 23(7): 9109-9120. doi:  10.1364/OE.23.009109
[73] Yang J, Shen Y, Liu Y, et al. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation [J]. Applied Physics Letters, 2017, 111(20): 201108. doi:  10.1063/1.5005831
[74] Shen Y, Liu Y, Ma C, et al. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media [J]. Optica, 2017, 4(1): 97-102. doi:  10.1364/OPTICA.4.000097
[75] Ma C, Di J, Zhang Y, et al. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation [J]. Optics Letters, 2018, 43(14): 3333-3336. doi:  10.1364/OL.43.003333
[76] Büttner L, Thümmler M, Czarske J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation [J]. Optics Express, 2020, 28(6): 8064-8075. doi:  10.1364/OE.386047
[77] Cheng Z, Wang L V. Focusing light into scattering media with ultrasound-induced field perturbation [J]. Light: Science & Applications, 2021, 10: 159.
[78] Fiolka R, Si K, Cui M. Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation [J]. Optics Express, 2012, 20(22): 24827-24834. doi:  10.1364/oe.20.024827
[79] Shen Y, Liu Y, Ma C, et al. Focusing light through scattering media by full-polarization digital optical phase conjugation [J]. Optics Letters, 2016, 41(6): 1130-1133. doi:  10.1364/OL.41.001130
[80] Jang M, Ruan H, Judkewitz B, et al. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique [J]. Optics Express, 2014, 22(5): 5787-5807. doi:  10.1364/OE.22.005787
[81] Woo C M, Zhao Q, Zhong T, et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping [J]. APL Photonics, 2022, 7(4): 046109. doi:  10.1063/5.0085943