[1] Cooke S, Ahmadi K, Willerth S, et al. Metal additive manufacturing:Technology, metallurgy and modelling [J]. Journal of Manufacturing Processes, 2020, 57: 978-1003. doi:  10.1016/j.jmapro.2020.07.025
[2] Qian M, Froes F H. Titanium Powder Metallurgy: Science, Technology and Applications[M]. Oxford: Butterworth-Heinemann, 2015.
[3] Strondl A, Lyckfeldt O, Brodin H K, et al. Characterization and control of powder properties for additive manufacturing [J]. JOM, 2015, 67(3): 549-554. doi:  10.1007/s11837-015-1304-0
[4] Sun P, Fang Z Z, Zhang Y, et al. Review of the methods for production of spherical Ti and Ti alloy powder [J]. JOM, 2017, 69(10): 1853-1860. doi:  10.1007/s11837-017-2513-5
[5] Wei W-H, Wang L-Z, Chen T, et al. Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization [J]. Advanced Powder Technology, 2017, 28(9): 2431-2437. doi:  10.1016/j.apt.2017.06.025
[6] Slotwinski J A, Garboczi E J, Stutzman P E, et al. Characterization of metal powders used for additive manufacturing [J]. Journal of Research of the National Institute of Standards and Technology, 2014, 119: 460. doi:  10.6028/jres.119.018
[7] Spierings A B, Voegtlin M, Bauer T U, et al. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing [J]. Progress in Additive Manufacturing, 2016, 1(1): 9-20. doi:  10.1007/s40964-015-0001-4
[8] ISO 13322-1. Particle size analysis-Image analysis methods-Part 1: Static image analysis methods[S]. Switzerland: [s.n.], 2014.
[9] Scientific T. Thermo Scientific ParticleMetric [OL]. [2021-03-21].https://www.thermofisher.cn/order/catalog/product/PARTICLEMETRIC?SID=srch-srp-PARTICLEMETRIC#/PARTICLEMETRIC?SID=srch-srp-PARTICLEMETRIC.
[10] ISO 14488. Particulate materials-Sampling and sample splitting for the determina-tion of particulate properties[S]. Switzerland: [s.n.], 2007.
[11] Chong Z, Chaoyang M, Zicheng W, et al. Spheroidization of TC4 (Ti6Al4V) alloy powders by radio frequency plasma processing [J]. Rare Metal Materials and Engineering, 2019, 48(2): 446-451.
[12] Oktay A B, Gurses A. Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images [J]. Micron, 2019, 120: 113-119. doi:  10.1016/j.micron.2019.02.009
[13] Rueden C T, Schindelin J, Hiner M C, et al. ImageJ2:ImageJ for the next generation of scientific image data [J]. BMC bioinformatics, 2017, 18(1): 1-26. doi:  10.1186/s12859-017-1934-z
[14] Grant T, Rohou A, Grigorieff N. cisTEM, user-friendly software for single-particle image processing [J]. eLife, 2018, 7: e35383. doi:  10.7554/eLife.35383
[15] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017.
[16] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN [J]. Computers and Electronics in Agriculture, 2019, 163: 104846. doi:  10.1016/j.compag.2019.06.001
[17] Frei M, Kruis F E. Image-based size analysis of agglomerated and partially sintered particles via convolutional neural networks [J]. Powder Technology, 2020, 360: 324-336. doi:  10.1016/j.powtec.2019.10.020
[18] Wu Y, Lin M, Rohani S. Particle characterization with on-line imaging and neural network image analysis [J]. Chemical Engineering Research and Design, 2020, 157: 114-125. doi:  10.1016/j.cherd.2020.03.004
[19] Huang H, Luo J, Tutumluer E, et al. Automated segmentation and morphological analyses of stockpile aggregate images using deep convolutional neural networks [J]. Transportation Research Record, 2020, 2674(10): 285-298. doi:  10.1177/0361198120943887
[20] Ruiz-Santaquiteria J, Bueno G, Deniz O, et al. Semantic versus instance segmentation in microscopic algae detection [J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103271. doi:  10.1016/j.engappai.2019.103271
[21] Russell B C, Torralba A, Murphy K P, et al. LabelMe:a database and web-based tool for image annotation [J]. International Journal of Computer Vision, 2008, 77(1-3): 157-173. doi:  10.1007/s11263-007-0090-8
[22] Ren S, He K, Girshick R, et al. Faster r-cnn:Towards real-time object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28: 91-99.
[23] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[24] Canziani A, Paszke A, Culurciello E. An analysis of deep neural network models for practical applications [J]. arXiv preprint, 2016: arXiv:1605.07678.
[25] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//European Conference on Computer Vision, 2014.
[26] Vangla P, Roy N, Gali M L. Image based shape characterization of granular materials and its effect on kinematics of particle motion [J]. Granular Matter, 2018, 20(1): 1-19. doi:  10.1007/s10035-017-0776-8
[27] De Boor C, De Boor C. A Practical Guide to Splines[M]. New York: Springer-Verlag, 1978.
[28] Hentschel M L, Page N W. Selection of descriptors for particle shape characterization [J]. Particle & Particle Systems Characterization, 2003, 20(1): 25-38. doi:  10.1002/ppsc.200390002
[29] Özbilen S. Satellite formation mechanism in gas atomised powders [J]. Powder Metallurgy, 1999, 42(1): 70-78. doi:  10.1179/pom.1999.42.1.70