[1] Yasushi F, Masahiro N. Infrared luminescence from bismuth-doped silica Glass [J]. Jpn J Appl Phys, 2001, 40: L279. doi:  10.1143/JJAP.40.L279
[2] Dianov E M, Dvoyrin V V, Mashinsky V M, et al. CW bismuth fibre laser [J]. Quantum Electron, 2005, 35: 1083-1084. doi:  10.1070/QE2005v035n12ABEH013092
[3] Wang W C, Zhou B, Xu S H, et al. Recent advances in soft optical glass fiber and fiber lasers [J]. Prog Mater Sci, 2019, 101: 90-171. doi:  10.1016/j.pmatsci.2018.11.003
[4] Khegai A M, Alyshev S V, Vakhrushev A S, et al. Recent advances in Bi-doped silica-based optical fibers: A short review [J]. J Non-Cryst Solids: X, 2022, 16: 100126.
[5] Peng M Y, Dong G P, Wondraczek L, et al. Discussion on the origin of NIR emission from Bi-doped materials [J]. J Non-Cryst Solids, 2011, 357: 2241-2245. doi:  10.1016/j.jnoncrysol.2010.11.086
[6] Khonthon S, Morimoto S, Arai Y, et al. Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics [J]. J Ceram Soc Jpn, 2007, 115: 259-263. doi:  10.2109/jcersj.115.259
[7] Peng M, Wu B, Da N, et al. Bismuth-activated luminescent materials for broadband optical amplifier in WDM system [J]. J Non-Cryst Solids, 2008, 354: 1221-1225. doi:  10.1016/j.jnoncrysol.2007.01.106
[8] Meng X G, Qiu J R, Peng M Y, et al. Near infrared broadband emission of bismuth-doped aluminophosphate glass [J]. Opt Express, 2005, 13: 1628-1634. doi:  10.1364/OPEX.13.001628
[9] Meng X G, Qiu J R, Peng M Y, et al. Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses [J]. Opt Express, 2005, 13: 1635-1642. doi:  10.1364/OPEX.13.001635
[10] Romanov A N, Fattakhova Z T, Zhigunov D M, et al. On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation [J]. Opt Mater, 2011, 33: 631-634. doi:  10.1016/j.optmat.2010.11.019
[11] Zhang J, Han L, Guan Z, et al. Electronic and luminescence characteristics of interstitial Bi0 atom in bismuth-doped silica optical fiber [J]. J Lumin, 2019, 207: 346-350. doi:  10.1016/j.jlumin.2018.09.013
[12] Sokolov V O, Plotnichenko V G, Dianov E M. The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study [J]. Opt Mater Express, 2013, 3: 1059-1074. doi:  10.1364/OME.3.001059
[13] Cao R, Peng M, Wondraczek L, et al. Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3 [J]. Opt Express, 2012, 20: 2562-2571. doi:  10.1364/OE.20.002562
[14] Cao R P, Peng M Y, Zheng J Y, et al. Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3 [J]. Opt Express, 2012, 20: 18505-18514. doi:  10.1364/OE.20.018505
[15] Ren J, Qiu J, Chen D, et al. Infrared luminescence properties of bismuth-doped barium silicate glasses [J]. J Mater Res, 2007, 22: 1954-1958. doi:  10.1557/jmr.2007.0245
[16] Zhou S, Feng G, Bao J, et al. Broadband near-infrared emission from Bi-doped aluminosilicate glasses [J]. J Mater Res, 2007, 22: 1435-1438. doi:  10.1557/JMR.2007.0210
[17] Ren J, Dong G, Xu S, et al. Inhomogeneous broadening, luminescence origin and optical amplification in Bismuth-doped Glass [J]. J Phys Chem A, 2008, 112: 3036-3039. doi:  10.1021/jp709987r
[18] Ren J, Qiu J, Chen D, et al. Luminescence properties of bismuth-doped lime silicate glasses [J]. J Alloy Compd, 2008, 463: L5-L8. doi:  10.1016/j.jallcom.2007.09.026
[19] Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. I [J]. J Appl Phys, 1996, 79: 1736-1740. doi:  10.1063/1.360962
[20] Okhrimchuk A G, Butvina L N, Dianov E M, et al. Near-infrared luminescence of RbPb2Cl5: Bi crystals [J]. Opt Lett, 2008, 33: 2182-2184. doi:  10.1364/OL.33.002182
[21] Su L, Yu J, Zhou P, et al. Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB2O4 single crystals [J]. Opt Lett, 2009, 34: 2504-2506. doi:  10.1364/OL.34.002504
[22] Zhang P, Chen N, Wang R, et al. Charge compensation effects of Yb3+ on the Bi+: near-infrared emission in PbF2 crystal [J]. Opt Lett, 2018, 43: 2372-2375. doi:  10.1364/OL.43.002372
[23] Zhou M, Zhang P, Niu X, et al. Ultra-broadband and enhanced near-infrared emission in Bi/Er co-doped PbF2 laser crystal [J]. J Alloy Compd, 2022, 895: 162704. doi:  10.1016/j.jallcom.2021.162704
[24] Peng M Y, Qiu J R, Chen D P, et al. Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses [J]. Opt Lett, 2005, 30: 2433-2435. doi:  10.1364/OL.30.002433
[25] Peng M Y, Zollfrank C, Wondraczek L. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature [J]. J Phys-Condens Mat, 2009, 21: 285106. doi:  10.1088/0953-8984/21/28/285106
[26] Zhang N, Sharafudeen K N, Dong G, et al. Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses [J]. J Am Ceram Soc, 2012, 95: 3842-3846. doi:  10.1111/jace.12016
[27] Peng M, Sprenger B, Schmidt M A, et al. Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting Bismuth centers [J]. Opt Express, 2010, 18: 12852-12863. doi:  10.1364/OE.18.012852
[28] Zheng J, Peng M, Kang F, et al. Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model [J]. Opt Express, 2012, 20: 22569-22578. doi:  10.1364/OE.20.022569
[29] Peng M Y, Qiu J R, Chen D P, et al. Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification [J]. Opt Lett, 2004, 29: 1998-2000. doi:  10.1364/OL.29.001998
[30] Ren J, Chen D P, Yang G, et al. Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses [J]. Chin Phys Lett, 2007, 24: 1958. doi:  10.1088/0256-307X/24/7/047
[31] Romanov A N, Haula E V, Fattakhova Z T, et al. Near-IR luminescence from subvalent bismuth species in fluoride glass [J]. Opt Mater, 2011, 34: 155-158. doi:  10.1016/j.optmat.2011.08.012
[32] Chen W, Cao J, Peng M, et al. Enhancement of ultrabroadband Bi NIR emission via fluorination for all wavelength amplification of optical communication [J]. J Am Ceram Soc, 2020, 104: 1309-1317.
[33] Chen F G, Wang Y F, Chen W W, et al. Regulating the Bi NIR luminescence behaviours in fluorine and nitrogen co-doped germanate glasses [J]. Mater Adv, 2021, 2: 4743-4751. doi:  10.1039/D1MA00395J
[34] Cao J, Reupert A, Ding Y, et al. Intense broadband photoemission from Bi-doped ZrO2 embedded in vitreous aluminoborate via direct melt-quenching [J]. J Am Ceram Soc, 2022, 105: 2616-2624. doi:  10.1111/jace.18285
[35] Wang L P, Tan L L, Yue Y Z, et al. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth-doped germanate laser glass [J]. J Am Ceram Soc, 2016, 99: 2071-2076. doi:  10.1111/jace.14197
[36] Peng M Y, Wang C, Chen D P, et al. Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification [J]. J Non-Cryst Solids, 2005, 351: 2388-2393. doi:  10.1016/j.jnoncrysol.2005.06.033
[37] Tan L L, Qiao A, Lin C G, et al. Topological control of negatively charged local environments for tuning bismuth NIR luminescence in glass materials [J]. J Alloy Compd, 2022, 898: 162884. doi:  10.1016/j.jallcom.2021.162884
[38] Cao J, Xue Y, Peng J, et al. Enhanced NIR photoemission from Bi-doped aluminoborate glasses via topological tailoring of glass structure [J]. J Am Ceram Soc, 2019, 102: 1710-1719.
[39] Fei E, Zhang D, Ye R, et al. Structural engineering of germanosilicate glass network for enhanced Bi: NIR luminescence [J]. Opt Mater, 2019, 95: 109222. doi:  10.1016/j.optmat.2019.109222
[40] Xu Z, Yan J, Xu C, et al. Effect of SiO2 on optical properties of bismuth-doped B2O3-GeO2-SiO2 glasses [J]. Appl Phys B, 2018, 124: 178.
[41] Xue Y, Cao J, Zhang Z, et al. Manipulating Bi NIR emission by adjusting optical basicity, boron and aluminum coordination in borate laser glasses [J]. J Am Ceram Soc, 2018, 101: 624-633. doi:  10.1111/jace.15234
[42] Liu Y, Li J, Chen H, et al. Enhanced broadband NIR emission of low Bi-doped borate glass by carbon reduction [J]. Mater Lett, 2021, 305: 130791. doi:  10.1016/j.matlet.2021.130791
[43] Zhang D, Wang S, Liu Y, et al. Regulation of bismuth valence in nano-porous silica glass for near infrared ultra-wideband optical amplification [J]. Ceram Int, 2021, 47: 32619-32625. doi:  10.1016/j.ceramint.2021.08.157
[44] Cao J K, Li L Y, Wang L P, et al. Creating and stabilizing Bi NIR-emitting centers in low Bi content materials by topo-chemical reduction and tailoring of the local glass structure [J]. J Mater Chem C, 2018, 6: 5384-5390. doi:  10.1039/C8TC00540K
[45] Cao J K, Li X M, Wang L P, et al. New strategy to enhance the broadband near-infrared emission of bismuth-doped laser glasses [J]. J Am Ceram Soc, 2018, 101: 2297-2304. doi:  10.1111/jace.15412
[46] Royon A, Petit Y, Papon G, et al. Femtosecond laser induced photochemistry in materials tailored with photosensitive agents [Invited] [J]. Opt Mater Express, 2011, 1: 866-882. doi:  10.1364/OME.1.000866
[47] Tan D, Sharafudeen K N, Yue Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications [J]. Prog Mater Sci, 2016, 76: 154-228. doi:  10.1016/j.pmatsci.2015.09.002
[48] Peng M, Zhao Q, Qiu J, et al. Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation [J]. J Am Ceram Soc, 2009, 92: 542-544. doi:  10.1111/j.1551-2916.2008.02909.x
[49] Kir’yanov A V, Dvoyrin V V, Mashinsky V M, et al. Influence of electron irradiation on optical properties of Bismuth doped silica fibers [J]. Opt Express, 2011, 19: 6599-6608. doi:  10.1364/OE.19.006599
[50] Sporea D, Mihai L, Neguţ D, et al. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres [J]. Sci Rep, 2016, 6: 29827. doi:  10.1038/srep29827
[51] Wang L, Cao J, Lu Y, et al. In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser [J]. Photonics Res, 2019, 7: 300-310. doi:  10.1364/PRJ.7.000300
[52] Minh Hau T, Yu X, Zhou D, et al. Super broadband near-infrared emission and energy transfer in Bi-Er co-doped lanthanum aluminosilicate glasses [J]. Opt Mater, 2013, 35: 487-490. doi:  10.1016/j.optmat.2012.10.021
[53] Dan H K, Qiu J, Zhou D, et al. Super broadband near-infrared emission and energy transfer in Nd-Bi-Er co-doped transparent silicate glass-ceramics [J]. Mater Lett, 2019, 234: 142-147. doi:  10.1016/j.matlet.2018.09.096
[54] Minh Hau T, Wang R, Yu X, et al. Near-infrared broadband luminescence and energy transfer in Bi-Tm-Er co-doped lanthanum aluminosilicate glasses [J]. J Phys Chem Solids, 2012, 73: 1182-1186. doi:  10.1016/j.jpcs.2012.04.006
[55] Cao J, Wondraczek L, Wang Y, et al. Ultrabroadband near-infrared photoemission from bismuth-centers in nitridated oxide glasses and optical fiber [J]. Acs Photonics, 2018, 5: 4393-4401. doi:  10.1021/acsphotonics.8b00814
[56] Cao J, Xu S, Zhang Q, et al. Ultrabroad photoemission from an amorphous solid by topochemical reduction [J]. Adv Opt Mater, 2018, 6: 1801059. doi:  10.1002/adom.201801059
[57] Chen W, Wang Y, Zhang J, et al. Ultra-broadband and thermally stable NIR emission in Bi-doped glasses and fibers enabled by a metal reduction strategy[J/OL]. J Am Ceram Soc, [2023-02-25](2023-02-27). https://doi.org/10.1111/jace.19071.
[58] Walker K L, Geyling F T, Nagel S R. Thermophoretic deposition of small particles in the modified chemical vapor deposition (MCVD) Process [J]. J Am Ceram Soc, 1980, 63: 552-558. doi:  10.1111/j.1151-2916.1980.tb10763.x
[59] Dvoyrin V V, Mashinsky V M, Dianov E M, et al. Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres[C]//2005 31st European Conference on Optical Communication, 2005: 949-950.
[60] Khegai A, Afanasiev F, Ososkov Y, et al. The influence of the MCVD process parameters on the optical properties of bismuth-doped phosphosilicate fibers [J]. J Lightwave Technol, 2020, 38: 6114-6120. doi:  10.1109/JLT.2020.3008536
[61] Dianov E M. Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers [J]. Light Sci Appl, 2012, 1: e12. doi:  10.1038/lsa.2012.12
[62] Dianov E M, Firstov S V, Khopin V F, et al. Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 μm [J]. Quantum Electron, 2008, 38: 615-617. doi:  10.1070/QE2008v038n07ABEH013915
[63] Firstov S V, Bufetov I A, Khopin V F, et al. Time-resolved spectroscopy and optical gain of silica-based fibers co-doped with Bi, Al and/or Ge, P, and Ti [J]. Laser Phys, 2009, 19: 894-901. doi:  10.1134/S1054660X09040501
[64] Ballato J, Peacock A C. Perspective: Molten core optical fiber fabrication—A route to new materials and applications [J]. APL Photonics, 2018, 3: 120903. doi:  10.1063/1.5067337
[65] Coucheron D A, Fokine M, Patil N, et al. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres [J]. Nat Commun, 2016, 7: 13265. doi:  10.1038/ncomms13265
[66] Ballato J, Snitzer E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications [J]. Appl Opt, 1995, 34: 6848-6854. doi:  10.1364/AO.34.006848
[67] Fang Z, Zheng S, Peng W, et al. Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method [J]. J Am Ceram Soc, 2016, 99: 856-859. doi:  10.1111/jace.14060
[68] Zhang Z, Cao J, Zheng J, et al. Bismuth-doped germanate glass fiber fabricated by the rod-in-tube technique [J]. Chin Opt Lett, 2017, 15: 121601. doi:  10.3788/COL201715.121601
[69] Thipparapu N K, Wang Y, Wang S, et al. Bi-doped fiber amplifiers and lasers [Invited] [J]. Opt Mater Express, 2019, 9: 2446-2465. doi:  10.1364/OME.9.002446
[70] Dianov E M, Shubin A V, Melkumov M A, et al. High-power cw bismuth-fiber lasers [J]. J Opt Soc Am B, 2007, 24: 1749-1755. doi:  10.1364/JOSAB.24.001749
[71] Thipparapu N K, Umnikov A A, Jain S, et al. Diode pumped Bi-doped fiber laser operating at 1360 nm[C]//Workshop on Specialty Optical Fibers and Their Applications. Hong Kong: Optical Society of America, 2015.
[72] Dvoirin V V, Mashinskii V M, Medvedkov O I, et al. Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500 nm region [J]. Quantum Electron, 2009, 39: 583-584. doi:  10.1070/QE2009v039n06ABEH014119
[73] Bufetov I A, Firstov S V, Khopin V F, et al. Bi-doped fiber lasers and amplifiers for a spectral region of 1300-1470 nm [J]. Opt Lett, 2008, 33: 2227-2229. doi:  10.1364/OL.33.002227
[74] Dianov E M, Firstov S V, Khopin V F, et al. Bi-doped fibre lasers operating in the range 1470-1550 nm [J]. Quantum Electron, 2009, 39: 299-301. doi:  10.1070/QE2009v039n04ABEH014078
[75] Shubin A V, Bufetov I A, Melkumov M A, et al. Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W [J]. Opt Lett, 2012, 37: 2589-2591. doi:  10.1364/OL.37.002589
[76] Dianov E M, Firstov S V, Alyshev S V, et al. A new bismuth-doped fibre laser, emitting in the range 1625-1775 nm [J]. Quantum Electron, 2014, 44: 503-504. doi:  10.1070/QE2014v044n06ABEH015535
[77] Firstov S V, Alyshev S V, Riumkin K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm [J]. Opt Lett, 2015, 40: 4360-4363. doi:  10.1364/OL.40.004360
[78] Melkumov M A, Bufetov I A, Shubin A V, et al. Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band [J]. Opt Lett, 2011, 36: 2408-2410. doi:  10.1364/OL.36.002408
[79] Chapman B H, Kelleher E J R, Golant K M, et al. Amplification of picosecond pulses and gigahertz signals in bismuth-doped fiber amplifiers [J]. Opt Lett, 2011, 36: 1446-1448. doi:  10.1364/OL.36.001446
[80] Thipparapu N K, Wang Y, Umnikov A A, et al. 40 dB gain all fiber bismuth-doped amplifier operating in the O-band [J]. Opt Lett, 2019, 44: 2248-2251. doi:  10.1364/OL.44.002248
[81] Wang Y, Thipparapu N K, Richardson D J, et al. Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands [J]. J Lightwave Technol, 2021, 39: 795-800. doi:  10.1109/JLT.2020.3039827
[82] Firstov S V, Alyshev S V, Riumkin K E, et al. A 23 dB bismuth-doped optical fiber amplifier for a 1700 nm band [J]. Sci Rep, 2016, 6: 28939. doi:  10.1038/srep28939
[83] Dvoyrin V V, Mashinsky V M, Turitsyn S K. Bismuth-doped fiber amplifier operating in the spectrally adjacent to EDFA range of 1425-1500 nm[C]//Optical Fiber Communication Conference (OFC) 2020. San Diego, California: Optica Publishing Group, 2020.
[84] Nikodem M, Khegai A M, Firstov S V. Single-frequency bismuth-doped fiber power amplifier at 1651 nm [J]. Laser Phys Lett, 2020, 16: 115102.
[85] Tian J, Guo M, Wang F, et al. High gain E-band amplification based on the low loss Bi/P co-doped silica fiber [J]. Chin Opt Lett, 2022, 20: 100602. doi:  10.3788/COL202220.100602
[86] Bufetov I A, Melkumov M A, Firstov S V, et al. Bi-doped optical fibers and fiber lasers [J]. IEEE J Sel Top Quantum Electron, 2014, 20: 111-125. doi:  10.1109/JSTQE.2014.2312926
[87] Seo Y S, Fujimoto Y, Nakatsuka M. Optical amplification in a bismuth-doped silica fiber[C]//SPIE, 2006, 6351: 63512C.
[88] Seo Y S, Lim C H, Fujimoto Y, et al. 9.6 dB Gain at a 1310 nm wavelength for a bismuth-doped fiber amplifier [J]. J Opt Soc Korea, 2007, 11: 63-66. doi:  10.3807/JOSK.2007.11.2.063
[89] Thipparapu N K, Jain S, Umnikov A A, et al. 1120 nm diode-pumped Bi-doped fiber amplifier [J]. Opt Lett, 2015, 40: 2441-2444. doi:  10.1364/OL.40.002441
[90] Bufetov I A, Melkumov M A, Khopin V F, et al. Efficient bi-doped fiber lasers and amplifiers for the spectral region 1300-1500 nm[C]//SPIE, 2010, 7580: 758014.
[91] Norizan S F, Chong W Y, Harun S W, et al. O-band bismuth-doped fiber amplifier with double-pass configuration [J]. IEEE Photonic Tech L, 2011, 23: 1860-1862. doi:  10.1109/LPT.2011.2170160
[92] Thipparapu N K, Umnikov A A, Barua P, et al. Bi-doped fiber amplifier with a flat gain of 25  dB operating in the wavelength band 1320-1360  nm [J]. Opt Lett, 2016, 41: 1518-1521. doi:  10.1364/OL.41.001518
[93] Mikhailov V, Melkumov M A, Inniss D, et al. Simple broadband bismuth doped fiber amplifier (BDFA) to extend O-band transmission reach and capacity[C]//Optical Fiber Communication Conference (OFC) 2019. San Diego, California: Optica Publishing Group, 2019: 1-3.
[94] Khegai A, Ososkov Y, Firstov S, et al. O-band bismuth-doped fiber amplifier with 67 nm bandwidth[C]//Optical Fiber Communication Conference (OFC) 2020. San Diego, California: Optica Publishing Group, 2020.
[95] Bufetov I A, Melkumov M A, Firstov S V, et al. Optical gain and laser generation in bismuth-doped silica fibers free of other dopants [J]. Opt Lett, 2011, 36: 166-168. doi:  10.1364/OL.36.000166