[1] Shi W, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: Introduction [J]. Journal of the Optical Society of America B, 2017, 34(3): FLA1. doi:  10.1364/JOSAB.34.00FLA1
[2] Harun S W, Alam S U, Kurkov A S, et al. Introduction to the issue on fiber lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 3. doi:  10.1109/JSTQE.2014.2360972
[3] Clery D. Physics laser fusion, with a difference [J]. Science, 2015, 347(6218): 111-112. doi:  10.1126/science.347.6218.111
[4] Zheng Y, Yang Y F, Wang J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation [J]. Optics Express, 2016, 24(11): 12063-12071. doi:  10.1364/OE.24.012063
[5] Han J H, Cui X D, Wang S, et al. Laser effects based optimal laser parameter identifications for paint removal from metal substrate at 1064 nm: A multi-pulse model [J]. Journal of Modern Optics, 2017, 64(19): 1947-1959. doi:  10.1080/09500340.2017.1330433
[6] Chen Y M, Zhou L Z, Yan F, et al. Mechanism and quality evaluation of laser cleaning of aluminum alloy [J]. Chinese Journal of Lasers, 2017, 44(12): 1202005. (in Chinese) doi:  10.3788/CJL201744.1202005
[7] Pask H M, Hanna D C. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 μm region [J]. Electronics Letters, 1994, 30(11): 863-865. doi:  10.1049/el:19940594
[8] Limpert J, Hofer S, Liem A, et al. 100-W average-power, high-energy nanosecond fiber amplifier [J]. Applied Physics B, 2002, 75(4-5): 477-479. doi:  10.1007/s00340-002-1018-1
[9] Cheng M Y, Chang Y C, Galvanauskas A, et al. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers [J]. Optics Letters, 2005, 30(4): 358-360. doi:  10.1364/OL.30.000358
[10] Fabio D T, Brooks C D. Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses [J]. Optics Letters, 2005, 30(24): 3299-3301. doi:  10.1364/OL.30.003299
[11] Fabio D T, Brooks C D. Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier[C]//Proceedings of the 4 th Conference on Fiber Laser-Technology, Systems, and Applications, 2007: 6453.
[12] Li W X, Hao Q, Yan M, et al. Tunable flat-top nanosecond fiber laser oscillator and 280 W average power nanosecond Yb-doped fiber amplifier [J]. Optics Express, 2009, 17(12): 10113-10118. doi:  10.1364/OE.17.010113
[13] IPG Photonics. YLPN-S 25×100 ns,1-3 kW[DB/OL]. [2022-01-17]http://www.ipgphotonics.com/en/products/laser/nanosecond-fiber-lasers/1-06-micron/ylpn-s.
[14] Raycus. RFL-P2000[DB/OL]. [2022-01-17]http://www.raycuslaser.com/view/1792.html.
[15] Lecourt J B, Bertrand A, Hernandez Y, et al. Short pulse and high repetition rate actively Q-switched all-in-fibre laser [J]. Electronics Letters, 2010, 46(5): 365-U5478. doi:  10.1049/el.2010.3290
[16] Ji X, Wang X L, Zhou P. Supercontinuum source using Q-switched all-fiber nanosecond pulsed laser based on acousto-optical modulation [J]. High Power Laser and Particle Beams, 2013, 25(1): 119-122. (in Chinese) doi:  10.3788/HPLPB20132501.0119
[17] Yang W Q, Zhang B, Hou J, et al. Gain-switched and mode-locked 2 μm Tm/Ho-codoped fiber laser [J]. High Power Laser and Particle Beams, 2012, 24(11): 2521-2522. (in Chinese) doi:  10.3788/HPLPB20122411.2521
[18] Chen P F, Wu B, Wang H Y, et al. Experimental study of gain-switched high repetition rate pulse fiber laser [J]. High Power Laser and Particle Beams, 2015, 27(4): 109-113. (in Chinese)
[19] Zhou B K, Gao Y Z, Chen T R, et al. The Principles of Laser[M]. 6 th ed. Beijing: National Defense Industry Press, 2010: 222-223. (in Chinese)
[20] Zenteno L A, Snitzer E, Po H, et al. Gain switching of a Nd+3-doped fiber laser [J]. Optics Letters, 1989, 14(13): 671-673.
[21] Larsen C, Hansen K P, Mattsson K E, et al. The all-fiber cladding-pumped Yb-doped gain-switched laser [J]. Optics Express, 2014, 22(2): 1490-1499. doi:  10.1364/OE.22.001490
[22] Wang J H, Cui S Z, Si L, et al. All-fiber single-mode actively Q-switched laser at 1120 nm [J]. Optics Express, 2013, 21(1): 289-294. doi:  10.1364/OE.21.000289
[23] Fang Q, Shi W, Tian X P. 978 nm single frequency actively Q-switched all fiber laser [J]. IEEE Photonics Technology Letters, 2014, 26(9): 874-876. doi:  10.1109/LPT.2014.2308899
[24] Yao B, Zhang D, Zhang J, et al. Narrow-bandwidth actively Q-switched all-fiber laser by suppressing ASE gain self-saturation [J]. Optics Express, 2019, 27(19): 27345-27353. doi:  10.1364/OE.27.027345
[25] Li C, Zhao W J, Han Y P. Narrow-linewidth linearly polarized nanosecond pulsed all-fiber amplifier with 75 kW peak power [J]. Optik, 2019, 185: 183-190. doi:  10.1016/j.ijleo.2019.03.014
[26] Huang L, Ma P F, Su R T, et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser [J]. Optics Express, 2021, 29(2): 761-782. doi:  10.1364/OE.414788
[27] Huang L, Ma P F, Meng D R, et al. Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality [J]. High Power Laser Science and Engineering, 2018, 6: 8. doi:  10.1017/hpl.2018.6
[28] Liu J, Wu S D, Yang Q H, et al. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser [J]. Optics Letters, 2011, 36(20): 4008-4010. doi:  10.1364/OL.36.004008
[29] Moore S W, Soh D B S, Bisson S E, et al. 400 µJ 79 ns amplified pulses from a Q-switched fiber laser using an Yb3+-doped fiber saturable absorber [J]. Optics Express, 2012, 20(21): 23778-23789. doi:  10.1364/OE.20.023778
[30] Lu Y, Gu X J. All-fiber passively Q-switched fiber laser with a Sm-doped fiber saturable absorber [J]. Optics Express, 2013, 21(2): 1997-2002. doi:  10.1364/OE.21.001997
[31] Tao M M, Feng G B, Luan K P, et al. Modeling of a pulsed, single cavity Yb-Bi fiber laser taking mode field area mismatch into consideration [J]. Laser Physics, 2019, 29(3): 035101. doi:  10.1088/1555-6611/aaff54
[32] Dussardier B, Maria J, Peterka P. Passively Q-switched ytterbium- and chromium-doped all-fiber laser [J]. Applied Optics, 2011, 50(25): E20-E23. doi:  10.1364/AO.50.000E20
[33] Yang S, Yang Y Y, Zhang L, et al. Alternated Q-switched and gain-switched dual-pulse Yb fiber laser with Tm-Ho co-doped fiber as saturable absorber [J]. Optics and Laser Technology, 2019, 113: 159-163. doi:  10.1016/j.optlastec.2018.12.009
[34] Soh D B S, Bisson S E, Patterson B D, et al. High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: Numerical simulations [J]. Optics Letters, 2011, 36(13): 2536-2538. doi:  10.1364/OL.36.002536
[35] Lu Y, Gu X J. Kilowatt peak power pulses from a passively Q-switched Yb-doped fiber laser with a smaller-core Yb-doped fiber as a saturable absorber [J]. IEEE Photonics Journal, 2014, 6(3): 7.
[36] Zhou J Q, Lu Y, He B, et al. Q-switched laser in an SMS cavity for inhibiting nonlinear effects [J]. Applied Optics, 2015, 54(19): 6080-6084. doi:  10.1364/AO.54.006080
[37] Dvoyrin V V. Pulsed fiber laser with cross-modulation of laser cavities[C]//Proceedings of the Conference on Lasers and Electro-Optics (CLEO), 2012.
[38] Jin D C, Sun R Y, Shi H X, et al. Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings [J]. Optics Express, 2013, 21(22): 26027-26033. doi:  10.1364/OE.21.026027
[39] Jin D C, Sun R Y, Wei S Y, et al. Nanosecond Yb-doped monolithic dual-cavity laser oscillator with large core fiber [J]. IEEE Photonics Technology Letters, 2015, 27(14): 1477-1480. doi:  10.1109/LPT.2015.2425914
[40] Agrez V, Petkovsek R. Highly adaptable gain-switched fiber laser with improved efficiency [J]. Optics Express, 2019, 27(9): 12100-12109. doi:  10.1364/OE.27.012100
[41] Hao H Y, Li L, Yang Y T. Experimental research on multi-peak phenomenon of acousto-optic Q-switched fiber laser output pulse [J]. Chinese Journal of Lasers, 2016, 43(6): 0601005. (in Chinese) doi:  10.3788/CJL201643.0601005
[42] Tsai T Y, Fang Y C, Huang H M, et al. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm [J]. Optics Express, 2010, 18(23): 23523-23528. doi:  10.1364/OE.18.023523
[43] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers [J]. Advances in Optics and Photonics, 2010, 2(1): 1-59. doi:  10.1364/AOP.2.000001
[44] Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers [J]. Nature Photonics, 2013, 7(11): 861-867. doi:  10.1038/nphoton.2013.273
[45] Jauregui C, Stihler C, Limpert J. Transverse mode instability [J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi:  10.1364/AOP.385184
[46] Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[C]//Proceedings of the 7 th Conference on Fiber Lasers - Technology, Systems, and Applications, 2010: 7580.
[47] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Optics Express, 2011, 19(14): 13218-13224. doi:  10.1364/OE.19.013218
[48] Yang B L, Zhang H W, Shi C, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme [J]. Optics Express, 2016, 24(24): 27828-27835. doi:  10.1364/OE.24.027828
[49] Fang Q, Shi W, Fan J L. 700-kW-peak-power monolithic nanosecond pulsed fiber laser [J]. IEEE Photonics Technology Letters, 2014, 26(16): 1676-1678. doi:  10.1109/LPT.2014.2330766
[50] Zheng C, Gong M L, Zhang H T, et al. All-fiber high energy and peak power broadband Yb-doped fiber amplifier [J]. Journal of Optics, 2013, 15(5): 052201. doi:  10.1088/2040-8978/15/5/052201
[51] Shen X L, Zhang H T, Gong M L. High energy (100 mJ) and high peak power (8 MW) nanosecond pulses delivered by fiber lasers and self-focusing analysis based on a novel mode decomposition method [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0901306.
[52] Chi J J, Li P X, Hu H, et al. 120 W subnanosecond ytterbium-doped double clad fiber amplifier and its application in supercontinuum generation [J]. Laser Physics, 2014, 24(8): 085103. doi:  10.1088/1054-660X/24/8/085103
[53] Su R T, Wang X L, Zhou P, et al. All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505 W average power [J]. Laser Physics Letters, 2013, 10(1): 015105. doi:  10.1088/1612-2011/10/1/015105
[54] Su R T, Zhou P, Wang X L, et al. Kilowatt high average power narrow-linewidth nanosecond all-fiber laser [J]. High Power Laser Science and Engineering, 2014, 2: e3. doi:  10.1017/hpl.2014.2
[55] Ran Y, Su R T, Ma P F, et al. 293 W, GHz narrow-linewidth, polarization maintaining nanosecond fiber amplifier with SBS suppression employing simultaneous phase and intensity modulation [J]. Optics Express, 2015, 23(20): 25896-25905. doi:  10.1364/OE.23.025896
[56] Ma P F, Tao R M, Huang L, et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality [J]. Journal of Optics, 2015, 17(7): 075501. doi:  10.1088/2040-8978/17/7/075501
[57] Malinowski A, Gorman P, Codemard C A, et al. High-peak-power, high-energy, high-average-power pulsed fiber laser system with versatile pulse duration and shape [J]. Optics Letters, 2013, 38(22): 4686-4689. doi:  10.1364/OL.38.004686
[58] Dinger R, Grundmann F P, Hapke C, et al. High peak- and average-power, pulse shaped fiber laser in the ns-regime applying step-index XLMA gain fibers[C]//Proceedings of the Conference on Fiber Lasers XI - Technology, Systems, and Applications, 2014: 8961.
[59] Dinger R, Grundmann F P, Hapke C, et al. Short-pulse MOPA fiber laser with kilowatt average power and multi-megawatt peak power, applying advanced XLMA fiber amplifiers[C]//Proceedings of the Conference on Fiber Lasers XIV - Technology and Systems, 2017: 10083.
[60] Li Z B, Guo C, Li Q, et al. 188 W nanosecond pulsed fiber amplifier at 1064 nm [J]. Laser Physics, 2016, 26(7): 075103. doi:  10.1088/1054-660X/26/7/075103
[61] Li P, Shi H X, Fu C. High power nanosecond pulsed ytterbium-doped fiber laser for laser cleanning [J]. Laser & Optoelectronics Progress, 2018, 55(12): 121406. (in Chinese)
[62] Wang S J, Zhang Z L, Cao C. Nanosecond pulse laser output with average power of 761 W and pulse energy of 17.5 mJ based on domestic fiber [J]. Chinese Journal of Lasers, 2019, 46(12): 1215002. (in Chinese) doi:  10.3788/CJL201946.1215002
[63] Wang S J, Cai Y M, Zhang Z L, et al. 1000 W nanosecond pulsed laser output based on homemade 100 μm/400 μm fiber [J]. Chinese Journal of Lasers, 2021, 48(1): 0115001. (in Chinese) doi:  10.3788/CJL202148.0115001
[64] Kim J, Dupriez P, Codemard C, et al. Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off [J]. Optics Express, 2006, 14(12): 5103-5113. doi:  10.1364/OE.14.005103
[65] Hu Q H, Zhao X F, Tian X, et al. Raman suppression in high-power fiber laser oscillator by long period fiber grating [J]. Results in Physics, 2021, 26: 104460. doi:  10.1016/j.rinp.2021.104460
[66] Hu Q H, Zhao X F, Tian X, et al. Stimulated raman scattering filters based on long period fiber gratings [J]. Acta Optica Sinica, 2021, 41(18): 1806003. (in Chinese) doi:  10.3788/AOS202141.1806003
[67] Song H Q, Yan D L, Wu W J, et al. SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG [J]. Optics Express, 2021, 29(13): 20535-20544. doi:  10.1364/OE.426979
[68] Nagel J, Temyanko V, Likhachev M E, et al. Experimental investigation of Silicate-Glass-Based Raman gain fibers with enhanced SBS suppression by selective transverse doping [J]. Journal of Lightwave Technology, 2016, 34(3): 928-942. doi:  10.1109/JLT.2016.2517664
[69] Filippov V, Chamorovskii Y, Kerttula J, et al. Double clad tapered fiber for high power applications [J]. Optics Express, 2008, 16(3): 1929-1944. doi:  10.1364/OE.16.001929
[70] Yang Y F, Li B L, Liu M Z, et al. Optimization and visualization of phase modulation with filtered and amplified maximal-length sequence for SBS suppression in a short fiber system: a theoretical treatment [J]. Optics Express, 2021, 29(11): 16781-16803. doi:  10.1364/OE.426070
[71] Lai W C, Ma P F, Liu W, et al. Seeding high brightness fiber amplifiers with multi-phase coded signal modulation for SBS effect management [J]. IEEE Access, 2020, 8: 127682-127689. doi:  10.1109/ACCESS.2020.3007413
[72] Otto H-J, Jauregui C, Stutzki F, et al. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector [J]. Optics Express, 2013, 21(14): 17285-17298. doi:  10.1364/OE.21.017285
[73] Montoya J, Hwang C, Martz D, et al. Photonic lantern kW-class fiber amplifier [J]. Optics Express, 2017, 25(22): 27543-27550. doi:  10.1364/OE.25.027543
[74] Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation [J]. Light: Science & Applications, 2012, 1: e8.
[75] Ma X Q, Zhu C, Hu I N, et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores [J]. Optics Express, 2014, 22(8): 9206-9219. doi:  10.1364/OE.22.009206
[76] Zhou J, Yan P, Yin S P, et al. All-fiber cascaded ytterbium-doped nanosecond pulsed amplifier [J]. Chinese Optics Letters, 2010, 8(5): 457-459. doi:  10.3788/COL20100805.0457
[77] Su R T, Zhou P, Wang X L, et al. Single-frequency nanosecond pulsed laser with output power of 300 W in all-fiber format [J]. High Power Laser and Particle Beams, 2012, 24(5): 1009-1010. (in Chinese) doi:  10.3788/HPLPB20122405.1009
[78] Zhang K, Zhang D Y, Li Y, et al. A 100 W all fiber nanosecond linearly polarized ytterbium-doped fiber amplifier [J]. Laser Physics, 2013, 23(9): 095110. doi:  10.1088/1054-660X/23/9/095110
[79] Zhu C, Wang X F, Zhang K, et al. Experimental study of high power pulse fiber laser based on gain-switched LD [J]. Laser & Infrared, 2014, 44(2): 145-148. (in Chinese)
[80] Yao W, Fan Z, Zhang X H. High power nanosecond pulse ytterbium doped fiber laser based on semiconductor laser modulation technology[C]//Proceedings of the Asia Communications and Photonics Conference (ACP), 2018.