[1] Amin S, Zabit U, Bernal O D, et al. High resolution laser self-mixing displacement sensor under large variation in optical feedback and speckle [J]. IEEE Sensors Journal, 2020, 20(16): 9140-9147.
[2] Li Y, Chun W, Yang N, et al. Optically mutual-injected terahertz quantum cascade lasers for self-mixing velocity measurements [J]. Optics Express, 2019, 27(19): 27076-27087.
[3] Chen J, Zhu H, Xia W, et al. Self-mixing birefringent dual-frequency laser Doppler velocimeter [J]. Optics Express, 2017, 25(2): 560-572. doi:  10.1364/OE.25.000560
[4] Yang Y, Li X, Li H, et al. Acceleration sensor based on laser self-mixing interference [J]. Acta Optica Sinica, 2013, 33(2): 0228003. (in Chinese) doi:  10.3788/AOS201333.0228003
[5] Chen W, Zhang S, Wu X. Angle measurement with laser feedback instrument [J]. Optics Express, 2013, 21(7): 8044-8050. doi:  10.1364/OE.21.008044
[6] Guo D, Jiang H, Shi L, et al. Laser self-mixing grating interferometer for MEMS accelerometer yesting [J]. IEEE Photonics Journal, 2018, 10(1): 6800609.
[7] Zhu W, Chen Q, Wang Y, et al. Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror [J]. Optics and Lasers in Engineering, 2018, 105: 150-158. doi:  10.1016/j.optlaseng.2018.01.022
[8] Jiang C, Wen X, Yin S, et al. Multiple self-mixing interference based on phase modulation and demodulation for vibration measurement [J]. Applied Optics, 2017, 56(4): 1006-1011. doi:  10.1364/AO.56.001006
[9] Kou K, Li X, Yang Y, et al. Self-mixing interferometry based on all phase FFT for high-precision displacement measurement [J]. Optik International Journal for Light & Electron Optics, 2015, 126(3): 356-360.
[10] Tao Y, Wang M, Guo D. Compound cavity theory of resonant phase modulation in laser self-mixing ultrasonic vibration measurement [J]. Optical Engineering, 2016, 55(7): 0741071.
[11] Guo D. Quadrature demodulation technique for self-mixing interferometry displacement sensor [J]. Optics Communications, 2011, 284(24): 5766-5769. doi:  10.1016/j.optcom.2011.08.027
[12] Yu Y, Fan Y, Xi J, et al. Improving the measurement performance for a self-mixing interferometry-based displacement sensing system [J]. Applied Optics, 2011, 50(26): 5064-5072. doi:  10.1364/AO.50.005064
[13] Randone E M, Donati S. Self-mixing interferometer: Analysis of the output signals [J]. Optics Express, 2006, 14(20): 9188-9196.
[14] Donati S, Giuliani G. Analysis of the signal amplitude regimes in injection detection using laser diodes[C]//Proceedings of SPIE the International Society for Optical Engineering, 2000, 3944: 639-644.
[15] Kong P, Yang H, Zang G, et al. Advances in laser speckle flowgraphy technique [J]. Optical Technique, 2014, 40(1): 21-26. (in Chinese)
[16] Alexandrova A S, Tzoganis V, Welsch C P. Laser diode self-mixing interferometry for velocity measurements [J]. Optical Engineering, 2015, 54(3): 034104.
[17] Huang Z, Li C, Li S, et al. Speckle affected fringe detection based on three envelope extraction for self-mixing displacement measurement [J]. Optics Communications, 2017, 392: 100-108. doi:  10.1016/j.optcom.2017.01.037
[18] Gao B, Chen Q, Jiang C, Chen P. Rotation speed measurement based on self-mixing speckle interference [J]. Optics Communications, 2018, 428: 110-112. doi:  10.1016/j.optcom.2018.07.056
[19] Gao Binku, Li Haoran, Qing Chen. Measurement of rotation speed based on self-mixing speckle interference [J]. Optical Technique, 2019, 45(2): 188-191. (in Chinese)
[20] Chang L, Xue Q, Ye H, et al. Normalized LMS filtering of self-mixing interference signal with varying frequency [J]. Destech Transactions on Computer Science and Engineering, 2019, 27870: 457-461.
[21] Jiang C L, Zhang Z H, Li C W. Vibration measurement based on multiple self-mixing interferometry [J]. Optics Communications, 2016, 367: 227-233. doi:  10.1016/j.optcom.2016.01.032
[22] 姜春雷. 基于多重反馈自混合干涉的振动测量技术研究[D]. 哈尔滨工业大学, 2017: 10-18.

Jiang C L. Research of vibration measurement technology based on multiple self-mixing interference[D]. Harbin: Harbin Institute of Technology, 2017: 10-18. (in Chinese)
[23] Zhang X Y, Gu W Y, Jiang C L, et al. Velocity measurement based on multiple self-mixing interference [J]. Applied Optics, 2017, 56: 6709-6713. doi:  10.1364/AO.56.006709
[24] Zhang Y T, Wang R, Wei Z, et al. Broad Range and high precision self-mixing interferometer based on spectral analysis with multiple reflections [J]. IEEE Sensors Journal, 2019, 19(3): 926-932. doi:  10.1109/JSEN.2018.2879506
[25] Sun H F, Zhang Y T, Chen H Q, et al. Large-range nanoscale self-mixing interferometer based on multiple reflections and even-power fast algorithm [J]. Optics Communications, 2019, 443: 160-165. doi:  10.1016/j.optcom.2019.03.024
[26] Kong L W, Cai W K, Shi L H, et al. Micro-displacement measurement technology based on Littrow-configured laser feedback grating interference [J]. Chinese Journal of Lasers, 2019, 46(4): 224-229. (in Chinese)
[27] Zhao Y, Zhang B, Han L. Laser self-mixing interference displacement measurement based on VMD and phase unwrapping [J]. Optics Communications, 2020, 456: 1245881-1245882.
[28] Zhang Z H, Sun L Q, Li C W. Laser self-mixing interferometry for micro-vibration measurement based on inverse Hilbert transform [J]. Optical Review, 2020, 27(1): 90-97.
[29] Guo C Y, Wu R. Improvement of real-time tracking measurement algorithm for optical feedback self-mixing interference displacement [J]. Modern Electronics Technique, 2018, 41(16): 116-119. (in Chinese)
[30] Zhang Z H, Li C W, Huang Z. Vibration measurement based on multiple Hilbert transform for self-mixing interferometry [J]. Optics Communicationa, 2019, 436: 192-196. doi:  10.1016/j.optcom.2018.12.032
[31] Wang X, Song X, Tan R, et al. Micro-vibration measurement based on current modulation and secondary feedback self-mixing interference technology [J]. Optical Review, 2019, 26(2): 241.
[32] Zhang Z H, Wang F L, Yuan T, et al. Multiple self-mixing interferometry based on lock-in amplifer analysis for vibration measurement [J]. Optical Review, 2020, 27: 313-320. doi:  10.1007/s10043-020-00600-0
[33] Zhang Z H, Tan Y D. Third-generation laser interference——Breakthrough in solid-state mirochip laser self-mixing measurement technology [J]. Measurement Technology, 2018, 38(03): 43-59. (in Chinese)
[34] Tan Y D, Zhang S L, Zhang S, et al. Response of microchip solid-state laser to external frequency-shifted feedback and its applications [J]. Scientific Reports, 2013, 3(1): 1-10.
[35] Wu Y, Tan Y D, Zeng Zhaoli, et al. High-performance HeNe laser feedback interferometer with birefringence feedback cavity scanned by piezoelectric transducer [J]. Review of Scientific Instruments, 2013, 84: 0561031-0561033.
[36] Zhu K Y, Guo B, Zhang S L, et al. Single-spot two-dimensional displacement measurement based on self-mixing interferometry [J]. Optica, 2017, 4(7): 729-735. doi:  10.1364/OPTICA.4.000729
[37] Li M F, Wang Y F, Jiang X S, et al. Free-space self-interference microresonator with tunable coupling regimes [J]. Applied Physics Letter, 2020, 117: 0311061-0311065.
[38] Capelli G, Bollati C, Giuliani G. Non-contact monitoring of heart beat using optical laser diode vibrocardiography[C]//International Workshop on Biophotonics, 2011: 1-3.
[39] Arasanz A, Azcona F J, Royo S, et al. A new method for the acquisition of arterial pulse wave using self-mixing interferometry [J]. Optics & Laser Technology, 2014, 63: 98-104.
[40] 魏颖斌. 基于激光自混合干涉效应的传感应用研究[D]. 厦门大学, 2017: 44-46.

Wei Y B. Researches of sensing applications based on laser self-mixing interference effect[D]. Xiamen: Xiamen University, 2017: 44-46. (in Chinese)
[41] Wei Y, Wang X, Huang W. Double-path acquisition of pulse wave transit time and heartbeat using self mixing interferometry [J]. Optics Communications, 2017, 393: 178-184. doi:  10.1016/j.optcom.2017.02.052
[42] Yang B, Wang D, Zhou L, et al. A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range [J]. Optics & Laser Technology, 2017, 91: 92-97.
[43] Yang B, Wang C, Jun Z, et al. A small-angle self-mixing measurement system with improved detection resolution based on a rotatable pentagonal prism [J]. Optics Communications, 2018, 429: 29-34. doi:  10.1016/j.optcom.2018.07.082
[44] Zhong J G, Liang Z Q, Li S P. Parameter optimization and direction recognition in angle measurement by laser self-mixing interference [J]. Optics and Precision Engineering, 2016, 24(5): 1003-1007. (in Chinese)
[45] Zhao Y K, Xiang R, Huang Z T, et al. Research on the multi-longitudinal mode laser self-mixing static angle-measurement system using a right-angle prism [J]. Measurement, 2020, 162: 107906. doi:  10.1016/j.measurement.2020.107906
[46] Zhu C J, Xu H H, Zhang H T, et al. High precision angle measurement method based on laser self-mixing interference [J]. Laser & Infrared, 2020, 50(01): 37-41. (in Chinese) doi:  10.3969/j.issn.1001-5078.2020.01.007
[47] Zhao Y, Fan X, Wang C, et al. An improved intersection feedback micro-radian angle-measurement system based on the Laser self-mixing interferometry [J]. Optics and Lasers in Engineering, 2020, 126: 105866. doi:  10.1016/j.optlaseng.2019.105866
[48] Donati S, Norgia M. Self-mixing interferometry for biomedical signals sensing [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 6900108.
[49] Kazmi S M S, Faraji E, Davis M A, et al. Flux or speed? Examining speckle contrast imaging of vascular flows [J]. Biomedical Optics Express, 2015, 6(7): 236031.
[50] Semyachkina-Glushkovskaya S G O, Abdurashitov A A A, Pavlov A P A, et al. Laser speckle imaging and wavelet analysis of cerebral blood flow associated with the opening of the blood-brain barrier by sound [J]. Chinese Optics Letters, 2017, 15(9): 090002. doi:  10.3788/COL201715.090002
[51] Yanez C, Azcona J F, Royo S. Confocal flowmeter based on self-mixing interferometry for real-time velocity profiling of turbid liquids flowing in microcapillaries [J]. Optics Express, 2019, 27(17): 24340-24352.
[52] Zhao Y, Shen X F, Yu J W, et al. Self-mixing interferometry-based micro flow cytometry system for label-free cells classification [J]. Applied Sciences, 2020, 10: 478. doi:  10.3390/app10020478
[53] Tan Y D, Zhang S L, Xu C X, et al. Inspecting and locating foreign body in biological sample by laser confocal feedback technology [J]. Applied Physics Letters, 2013, 103: 1019091.
[54] Tan Y D, Wang W P, Xu C X, et al. Laser confocal feedback tomography and nano-step height measurement [J]. Scientific Report, 2013, 2971(3): 1-7.
[55] Mowla A, Du B W, Taimre T, et al. Confocal laser feedback tomography for skin cancer detection [J]. Biomedical Optics Express, 2017, 8(9): 4037-4048. doi:  10.1364/BOE.8.004037
[56] Zhu K Y, Zhou B R, Lu Y Y, et al. Ultrasound-modulated laser feedback tomography in the reflective mode [J]. Optics Letters, 2019, 44(22): 5415-5417.
[57] Lim L Y, Bertling K, Taimre T, et al. Coherent imaging using laser feedback interferometry with pulsed-mode terahertz quantum cascade lasers [J]. Optics Express, 2019, 27(7): 10221-10233. doi:  10.1364/OE.27.010221
[58] Wang K, Cao M, Liu P. A method of human eye parameter measurement based on laser self-mixing interference [J]. Journal of Russian Laser Research, 2020, 41: 197-206. doi:  10.1007/s10946-020-09865-x
[59] Zhou B R, Wang Z H, Shen X J, et al. High-sensitivity laser confocal tomography based on frequency-shifted feedback technique [J]. Optics and Lasers in Engineering, 2020, 129: 106059. doi:  10.1016/j.optlaseng.2020.106059