[1] Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation [J]. Sensors, 2009, 9(1): 568−601. doi:  10.3390/s90100568
[2] Schwenke H, Neuschaefer-Rube U, Pfeifer T, et al. Optical methods for dimensional metrology in production engineering [J]. CIRP Annals-Manufacturing Technology, 2002, 51(2): 685−699. doi:  10.1016/S0007-8506(07)61707-7
[3] Blais F. Review of 20 years of range sensor development [J]. Journal of Electronic Imaging, 2004, 13(1): 231−240. doi:  10.1117/1.1631921
[4] Daanen H A M, TerHaar F B. 3D whole body scanners revisited [J]. Displays, 2013, 34: 270−275. doi:  10.1016/j.displa.2013.08.011
[5] Tong J, Zhou J, Liu L, et al. Scanning 3D full human bodies using kinects [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 643−650. doi:  10.1109/TVCG.2012.56
[6] Geng J. Structured-light 3D surface imaging: A tutorial [J]. Advances in Optics and Photonics, 2011, 3(2): 128−160. doi:  10.1364/AOP.3.000128
[7] He Jinying, Liu Xiaoli, Peng Xiang, et al. Integer pixel correlation searching for three-dimensional digital speckle based on gray constraint [J]. Chinese Journal of Lasers, 2017, 44(4): 150−157. (in Chinese)
[8] Tang Q, Liu C, Cai Z, et al. An improved spatiotemporal correlation method for high- accuracy random speckle 3D reconstruction [J]. Optics and Lasers in Engineering, 2018, 110: 54−62. doi:  10.1016/j.optlaseng.2018.05.007
[9] Zuo C, Tao T, Feng S, et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second [J]. Optics and Lasers in Engineering, 2018, 102: 70−91. doi:  10.1016/j.optlaseng.2017.10.013
[10] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-d object shapes [J]. Applied Optics, 1983, 22(24): 3977−3982. doi:  10.1364/AO.22.003977
[11] Zuo C, Feng S, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: a review [J]. Optics and Lasers in Engineering, 2018, 109: 23−59. doi:  10.1016/j.optlaseng.2018.04.019
[12] Zhong J, Weng J. Spatial carrier-fringe pattern analysis by means of wavelet transform: Wavelet transform profilometry [J]. Applied Optics, 2004, 43(26): 4993−4998. doi:  10.1364/AO.43.004993
[13] Ma J, Wang Z, Pan B, et al. Two-dimensional continuous wavelet transform for phase determination of complex interferograms [J]. Applied Optics, 2011, 50(16): 2425−2430. doi:  10.1364/AO.50.002425
[14] Sutton M A, Zhao M, Mcneill S R, et al. Development and assessment of a single-image fringe projection method for dynamic applications [J]. Experimental Mechanics, 2001, 41(3): 205−217. doi:  10.1007/BF02323136
[15] Srinivasan V, Liu H C, Halioua M, et al. Automated phase-measuring profilometry of 3-d diffuse objects [J]. Applied Optics, 1984, 23(18): 3105−3108. doi:  10.1364/AO.23.003105
[16] Peng J, Liu X, Deng D, et al. Suppression of projector distortion in phase-measuring profilometry by projecting adaptive fringe patterns [J]. Optics Express, 2016, 24(19): 21846−21860. doi:  10.1364/OE.24.021846
[17] Pan J, Huang P S, Chiang F P. Color-coded binary fringe projection technique for 3-D shape measurement [J]. Optical Engineering, 2005, 44(2): 023606. doi:  10.1117/1.1840973
[18] Zhang Z, Towers C E, Towers D P. Time efficient color fringe projection system for simultaneous 3D shape and color using optimum 3-frequency selection [J]. Optics Express, 2006, 14(14): 6444−6455. doi:  10.1364/OE.14.006444
[19] Zuo C, Chen Q, Gu G, et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection [J]. Optics and Lasers in Engineering, 2013, 51: 953−960. doi:  10.1016/j.optlaseng.2013.02.012
[20] Lei S, Zhang S. Flexible 3-D shape measurement using projector defocusing [J]. Optics Letters, 2009, 34(20): 3080−3082. doi:  10.1364/OL.34.003080
[21] Heist S, Mann A, Kühmstedt P, et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement [J]. Optical Engineering, 2014, 53(11): 112208. doi:  10.1117/1.OE.53.11.112208
[22] Guan Y, Yin Y, Li A, et al. Dynamic 3D imaging based on acousto-optic heterodyne fringe interferometry [J]. Optics Letters, 2014, 39(12): 3678−3681. doi:  10.1364/OL.39.003678
[23] Du H, Wang Z. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system [J]. Optics Letters, 2007, 32(16): 2438−2440. doi:  10.1364/OL.32.002438
[24] Huang Z, Xi J, Yu Y, et al. Improved geometrical model of fringe projection profilometry [J]. Optics Express, 2014, 22(26): 32220−32232. doi:  10.1364/OE.22.032220
[25] Zhang Z, Ma H, Zhang S, et al. Simple calibration of a phase-based 3D imaging system based on uneven fringe projection [J]. Optics Letters, 2011, 36(5): 627−629. doi:  10.1364/OL.36.000627
[26] Asundi A, Wensen Z. Unified calibration technique and its applications in optical triangular profilometry [J]. Applied Optics, 1999, 38(16): 3556−3561. doi:  10.1364/AO.38.003556
[27] Huang L, Chua P S K, Asundi A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion [J]. Applied Optics, 2010, 49(9): 1539−1548. doi:  10.1364/AO.49.001539
[28] Léandry I, Brèque C, Valle V. Calibration of a structured-light projection system: development to large dimension objects [J]. Optics and Lasers in Engineering, 2012, 50(3): 373−379. doi:  10.1016/j.optlaseng.2011.10.020
[29] Legarda-Sáenz R, Bothe T, Jüptner W P. Accurate procedure for the calibration of a structured light system [J]. Optical Engineering, 2004, 43(2): 464−471. doi:  10.1117/1.1635373
[30] Yin Y, Peng X, Li A. Calibration of fringe projection profilometry with bundle adjustment strategy [J]. Optics Letters, 2012, 37(4): 542−544. doi:  10.1364/OL.37.000542
[31] Zhang S, Huang P S. Novel method for structured light system calibration [J]. Optical Engineering, 2006, 45(8): 083601. doi:  10.1117/1.2336196
[32] Chen X, Xi J, Jin Y, et al. Accurate calibration for a camera-projector measurement system based on structured light projection [J]. Optics and Lasers in Engineering, 2009, 47(3-4): 310−319. doi:  10.1016/j.optlaseng.2007.12.001
[33] Chen R, Xu J, Chen H, et al. Accurate calibration method for camera and projector in fringe patterns measurement system [J]. Applied Optics, 2016, 55(16): 4293−4300. doi:  10.1364/AO.55.004293
[34] Vargas J, Quiroga J A, Terron-Lopez M J, et al. Flexible calibration procedure for fringe projection profilometry [J]. Optical Engineering, 2007, 46(2): 023601. doi:  10.1117/1.2709855
[35] Huang J, Wu Q. A new reconstruction method based on fringe projection of three-dimensional measuring system [J]. Optics and Lasers in Engineering, 2014, 52: 115−122. doi:  10.1016/j.optlaseng.2013.07.002
[36] Cai Z, Liu X, Li A, et al. Phase-3D mapping method developed from back-projection stereovision model for fringe projection profilometry [J]. Optics Express, 2017, 25(2): 1262−1277. doi:  10.1364/OE.25.001262
[37] Guo J, Peng X, Li A, et al. Automatic and rapid whole-body 3D shape measurement based on multinode 3D sensing and speckle projection [J]. Applied Optics, 2017, 56(31): 8759−8768. doi:  10.1364/AO.56.008759
[38] Peng X, Liu X, Yin Y, et al. Optical measurement network for large-scale and shell-like objects [J]. Optics Letters, 2011, 36(2): 157−159. doi:  10.1364/OL.36.000157
[39] Liu X, Peng X, Chen H, et al. Strategy for automatic and complete three-dimensional optical digitization [J]. Optics Letters, 2012, 37(15): 3126−3128. doi:  10.1364/OL.37.003126
[40] Liu Xiaoli, Peng Xiang, Yin Yongkai, et al. 3D auto-inspection for large thin-wall object [J]. Acta Optica Sinica, 2011, 31(3): 0312006. (in Chinese) doi:  10.3788/AOS201131.0312006
[41] Chen S Y, Li Y F. Automatic sensor placement for model-based robot vision [J]. Part B: Cybernetics, IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 393−408. doi:  10.1109/TSMCB.2003.817031
[42] Tarabanis K A, Allen P K, Tsai R Y. A survey of sensor planning in computer vision [J]. IEEE Transactions on Robotics and Automation, 1995, 11(1): 86−104. doi:  10.1109/70.345940
[43] Scott W R. Model-based view planning [J]. Machine Vision and Applications, 2009, 20(1): 47−69. doi:  10.1007/s00138-007-0110-2
[44] Liu X, Cai Z, Yin Y, et al. Calibration of fringe projection profilometry using an inaccurate 2D reference target [J]. Optics and Lasers in Engineering, 2017, 89: 131−137. doi:  10.1016/j.optlaseng.2016.05.025
[45] He D, Liu X, Peng X, et al. Eccentricity error identification and compensation for high-accuracy 3D optical measurement [J]. Measurement Science and Technology, 2013, 24(7): 075402. doi:  10.1088/0957-0233/24/7/075402
[46] Yin Yongkai, Liu Xiaoli, Li Ameng, et al. Sub-pixel location of circle target and its application [J]. Infrared and Laser Engineering, 2008, 37(4): 47−50. (in Chinese)
[47] Yin Y, Peng X, Liu X, et al. Calibration strategy of optical measurement network for large-scale and shell-like objects [J]. Optics Communications, 2012, 285(8): 2048−2056. doi:  10.1016/j.optcom.2011.12.100
[48] Besl P J, McKay N D. A method for registration of 3D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239−256. doi:  10.1109/34.121791
[49] Salvi J, Matabosch C, Fofi D, et al. A review of recent range image registration methods with accuracy evaluation [J]. Image and Vision Computing, 2007, 25(5): 578−596. doi:  10.1016/j.imavis.2006.05.012
[50] Liu Xiaoli. Key techniques in multiple range images modeling [D]. Tianjin: Tianjin University, 2008. (in Chinese)
[51] Liu X, Peng X, He D, et al. Automatic 3D imaging and modeling system with color information for cultural heritage digitization [C]//Fringe 2013, 2013: 821-826.
[52] Li A, Peng X, Yin Y, et al. Optical 3D digitizer for photorealistic imaging of movable cultural heritage [J]. Acta Photonica Sinica, 2013, 42(12): 1421−1429. (in Chinese) doi:  10.3788/gzxb20134212.1421
[53] Liu X, Peng X, Yin Y, et al. Generation of photorealistic 3D image using optical digitizer [J]. Applied Optics, 2012, 51(7): 1304−1311.
[54] Liu Xiaoli, Peng Xiang, Yin Yongkai, et al. A method for global registration of range data combined with markers [J]. Acta Optica Sinica, 2009, 29(4): 1010−1014. (in Chinese) doi:  10.3788/AOS20092904.1010
[55] Liu X, He X, Liu Z, et al. Automatic registration of range images combined with the system calibration and global ICP [C]//SPIE, 2012: 8499-1X.
[56] Liu Xiaoli, Peng Xiang, Yin Yongkai, et al. Introduction and comparison of range image registration methods [J]. Laser & Optoelectronics Progress, 2010, 47(12): 121001. (in Chinese)
[57] Liu Xiaoli, Peng Xiang, Li Ameng, et al. Range images registration combined with texture information [J]. Journal of Computer-aided Design & Computer Graphics, 2007, 19(3): 340−345. (in Chinese)
[58] Liu Xingming, Liu Xiaoli, Yin Yongkai, et al. Texture blending of 3D photo-realistic model [J]. Journal of Computer-aided Design & Computer Graphics, 2012, 24(11): 1440−1446. (in Chinese)
[59] Liu X, Li A, Zhao X, et al. Model-based optical metrology and visualization of 3-D complex objects [J]. Optoelectronics Letters, 2007, 3(2): 115−118. doi:  10.1007/s11801-007-7018-y
[60] Liu Xiaoli, Peng Xiang, Li Ameng, et al. Integration of multiple range images based on ray casting [J]. Journal of Computer-aided Design & Computer Graphics, 2007, 19(10): 1286−1291. (in Chinese)