[1] Cohen-Sabban J, Cohen-Sabban Y, Roussel A. Distortion-free 2-D space and surface scanners using light deflectors [J]. Appl Opt, 1983, 22(24): 3935-3942. doi:  10.1364/AO.22.003935
[2] Li Y J, Katz J. Laser beam scanning by rotary mirrors. I. Modeling mirror-scanning devices [J]. Appl Opt, 1995, 34(28): 6403-6416. doi:  10.1364/AO.34.006403
[3] Cai Y Q, Tong X H, Tong P, et al. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging [J]. Appl Opt, 2010, 49(34): 11-19. doi:  10.1364/AO.49.000H11
[4] Lee X B, Wang C H. Optical design for uniform scanning in MEMS-based 3D imaging lidar [J]. Appl Opt, 2015, 54(9): 2219-2223.
[5] Artamonov S I, Gryaznov N A, Kuprenuuk V I, et al. Selection of scanners for use in lidar systems [J]. J Opt Technol, 2016, 83(9): 549-555. doi:  10.1364/JOT.83.000549
[6] Hookman R A, Zurmehly G E, Hodgman N S. Scanning mirror design considerations for a geostationary spaceborne radiometer[C]//SPIE,1992, 1693: 318-329.
[7] Wang M Z, Huang X X, Feng Q. Two judging methods of seamless stitching for frame sensor on the geostationary prbit: Grid method and the geometric intersection method [J]. Journal of Remote Sensing, 2017, 21(6): 871-880. (in Chinese)
[8] Talmor A G, Harding H, Chen C C. Two-axis gimbal for air-to-air and air-to-ground laser communications[C]//SPIE, 2016, 9739: 97390G.
[9] Kesner J E, Hinrichs K M, Narkewich L E, et al. Compact optical gimbal as a conformal beam director for large field-of-regard lasercom applications[C]//SPIE, 2015, 9354: 93540K.
[10] Hafez M, Julliard K, Grossmann S, et al. Compact multisensor laser scanning head for processing and monitoring microspot welding[C]//SPIE, 2000, 4088: 268-271.
[11] Hafez M, Sidler T, Salathé R P. Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner [J]. Opt Eng, 2003, 42(4): 1048-1057. doi:  10.1117/1.1557694
[12] Wang D L, Liang P, Samuelson S, et al. Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors [J]. Biomed Opt Express, 2013, 4(10): 2066. doi:  10.1364/BOE.4.002066
[13] Lin L Y, Keeler E G. Progress of MEMS scanning micromirrors for optical Bio-imaging [J]. Micromachines, 2015, 6: 1675-1689. doi:  10.3390/mi6111450
[14] Pokorny P. One-mirror and two-mirror three-dimensional optical scanners—position and accuracy of laser beam spot [J]. Appl Opt, 2014, 53(12): 2730-2740. doi:  10.1364/AO.53.002730
[15] Smith T. On systems of plane reflecting surfaces [J]. Transactions of the Optical Society, 1928, 30: 68-78. doi:  10.1088/1475-4878/30/2/302
[16] Pegis R J, Rao M. Analysis and design of plane-mirror systems [J]. Appl Opt, 1963, 2(12): 1271-1274. doi:  10.1364/AO.2.001271
[17] Li Y J. Laser beam scanning by rotary mirrors Ⅱ conic-section scan patterns [J]. Appl Opt, 1995, 34(28): 6417-6430.
[18] Li Y J. Single-mirror beam steering system: analysis and synthesis of high-order conic-section scan patterns [J]. Appl Opt, 2008, 47(3): 386-398. doi:  10.1364/AO.47.000386
[19] Li Y J. Beam deflection and scanning by two-mirror and two-axis systems of different architectures: A unified approach [J]. Appl Opt, 2008, 47(32): 5976-5985. doi:  10.1364/AO.47.005976
[20] Li Y J. Differential geometry of the ruled surfaces optically generated by mirror-scanning devices [J]. J Opt Soc Am A, 2011, 28(4): 667-674. doi:  10.1364/JOSAA.28.000667
[21] Li Y J. Differential geometry of the ruled surfaces optically generated by mirror scanning devices: Ⅱ. Generation of helicoids and hyperbolic paraboloids [J]. J Opt Soc Am A, 2011, 28(6): 1239-1242. doi:  10.1364/JOSAA.28.001239
[22] Anzolin G, Gardelein A, Jofre M, et al. Polarization change induced by a galvanometric optical scanner [J]. J Opt Soc Am A, 2010, 27(9): 1946-1952. doi:  10.1364/JOSAA.27.001946
[23] Yang Y F, Yan C X. Polarization property analysis of a periscopic scanner with three-dimensional polarization ray-tracing calculus [J]. Appl Opt, 2016, 55(6): 1343-1350. doi:  10.1364/AO.55.001343
[24] Jiang L, Wang C, Liu Z, et al. Effects on performance of a 90° optical hybrid due to rotation of a 45° reflector scanner in a free space optical communication terminal [J]. J Laser Appl, 2018, 30(3): 032012. doi:  10.2351/1.4990945
[25] Lian Tongshu. Conjugate Theory of Reflecting Prism[M]. Beijing: Beijing Institute of Technology Press, 1988: 1-6. (in Chinese)
[26] Zhang E, Gong Huixing. Research and application of system for offsetting image rotation from 45° rotating scan mirror [J]. J Infrared Millim Waves, 1999, 18(2): 125-132. (in Chinese)
[27] Liu Yinnian. Analysis of the imaging characteristics and scanning traces of the 45° rotating mirror [J]. Optics and Precision Engineering, 2002, 10(1): 110-115. (in Chinese)
[28] Hui Bin, Pei Yuntian, Wang Ganquan. Optical analysis of space two-axus scanning mirror [J]. Chinese Journal of Quantum Electronics, 2005, 22(5): 810-813. (in Chinese)
[29] Hui Bin, Li Jingzhen, Huang Hongbin, et al. Optical analysis of space two-axis scanning mirror [J]. Infrared Technology, 2006, 28(9): 508-511. (in Chinese)
[30] Li Shuying, Zhou Shichun. Analysis of the imaging characteristics of the two-dimensional pointing mirror [J]. Opto Electronic Engineering, 2008, 35(5): 17-22. (in Chinese)
[31] Chen Qiang. Analysis and correction of the image aberration of 45° directional mirror [J]. Infrared and Laser Engineering, 2010, 39(2): 301-305. (in Chinese)
[32] Wang Wu, Hong Pu, Wang Bo, et al. Characteristic analysis of two-dimensional scanning mirror rotating [J]. Optics & Optoelectronic Technology, 2015, 13(2): 82-86. (in Chinese)
[33] Gao Duorui, Li Tianlun, Sun Yue, et al. Latest developments and trends of space laser communication [J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese) doi:  10.3788/co.20181106.0901
[34] Tan Liying, Wu Shichen, Han Qiqi, et al. Coarse tracking of periscope type satellite optical communication terminals [J]. Optics and Precision Engineering, 2012, 20(2): 271-276. (in Chinese)
[35] Meng Lixin, Zhao Dingxuan, Zhang Lizhong, et al. Research on acquisition and tracking system for space laser communication networking [J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2014, 37(6): 70-76. (in Chinese)
[36] Zhang Jiaqi, Zhang Lizhong, Dong Keyan, et al. Coarse tracking technology of secondary imaging Coude-type laser communication terminal [J]. Chinese Optics, 2018, 11(4): 644-653. (in Chinese) doi:  10.3788/co.20181104.0644
[37] Li Xiang, Li Xiaoming, Zhang Jiaqi, et al. Integrated SiC/Al lightweight tip-tilt mirror of multi-node laser communications antenna [J]. Infrared and Laser Engineering, 2019, 48(S1): S118001. (in Chinese)
[38] Heese C, Sodnik Z, Carnelli I. Design of the optical communication system for the asteroid impact mission[C]//SPIE, 2016, 10562: 105622W.
[39] Householder A S. Principles of Numerical Analysis[M]. New York: McGraw-Hill, 1953: 135-138.