[1] Fried D L. Scintillation of a ground-to-space laser illuminator [J]. Journal of the Optical Society of America, 1967, 57(8): 980-983. doi:  10.1364/JOSA.57.000980
[2] Gao Duorui, Xie Zhuang, Ma Rong, et al. Development current status and trend analysis of satellite laser communicaion (Invited) [J]. Acta Photonica Sinica, 2021, 50(4): 0406001. (in Chinese)
[3] Minott P O. Scintillation in an earth-to-space propagation path [J]. Journal of the Optical Society of America, 1972, 62(7): 885-888. doi:  10.1364/JOSA.62.000885
[4] Sans M, Sodnik Z, Zayer I, et al. Design of the ESA optical ground station for participation in LLCD [C]//Proc Intemational Conference on Space Optical Systems and Applications (ICSOS 2012), 2012: 9-12.
[5] Chaudhry A U, Yabikomeroglu H. Laser intersatellite links in a starlink constellation: A classification and analysis [J]. IEEE Vehicular Technology Magazine, 2021, 16(2): 48-56. doi:  10.1109/MVT.2021.3063706
[6] Fields R, Lunde C, Wong R, et al. NFIRE-to-TerraSAR-X laser communication results: Satellite pointing, disturbances, and other attributes consistent with successful performance [C]//Sensors and Systems for Space Applications III, SPIE, 2009, 7330: 73300Q.
[7] Migliore R, Duncan J, Pulcina V, et al. Outlook on EDRS-C [C]//International Conference on Space Optics (ICSO 2016), SPIE, 2017, 10562: 105622S.
[8] Chishiki Y, Yamalawa S, Takano Y, et al. Overview of optical data relay system in JAXA [C]//Free-Space Laser Communica-tion and Atmospheric Propagation XXVIII, SPIE, 2016, 9739: 97390D.
[9] Kubo-Oka T, Kunimori H, Suzuki K, et al. Development of "HICALI": High speed optical feeder link system between GEO and ground [C]//International Conference on Space Optics (ICSO 2018), SPIE, 2019, 11180: 1118060.
[10] Zhang Qingjun, Zhang Jian, Zhang Huan, et al. The study of HY-2A satellite engineering development and in-orbit movement [J]. Strategic Study of CAE, 2013, 15(7): 12-18. (in Chinese)
[11] Ren Jianying, Sun Huayan, Zhang Laixian, et al. Development status of space laser communication and new method of networking [J]. Laser & Infrared, 2019, 49(2): 143-150. (in Chinese)
[12] 王旭. 实践十三号卫星成功发射开启中国通信卫星高通量时代[J]. 中国航天, 2017(5): 13.
[13] 崔岳, 唐勇. 实践二十号卫星在轨核心试验全部完成[J]. 国际太空, 2020(7): 38-41. doi:  10.3969/j.issn.1009-2366.2020.07.010
[14] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties [J]. IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355. doi:  10.1109/JQE.1980.1070479
[15] Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links [J]. Nature, 2005, 438(7066): 343-346. doi:  10.1038/nature04275
[16] Vanwiggeren G D, Roy R. Communication with chaotic lasers [J]. Science, 1998, 279(5354): 1198-1200. doi:  10.1126/science.279.5354.1198
[17] Bogris A, Rizomiliotis P, Chlouverakis K E, et al. Feedback phase in optically generated chaos. A secret key for cryptographic applications [J]. IEEE Journal of Quantum Electronics, 2008, 44(2): 119-124. doi:  10.1109/JQE.2007.911687
[18] Argyris A, Bogris A, Giles I, et al. Subcarrier modulation boosts chaotic optical communication systems to error-free perfor mance [C]//2009 Conference on Optical Fiber Communication, 2009: JWA45.
[19] Wang A B, Yang Y B, Wang B J, et al. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference [J]. Opt Express, 2013, 21(7): 8701-8710. doi:  10.1364/OE.21.008701
[20] Ke J X, Yi L L, Yang Z, et al. 32 Gbs chaotic optical communications by deep-learning-based chaos synchronization [J]. Opt Lett, 2019, 44(23): 5776-5779. doi:  10.1364/OL.44.005776
[21] Zhao Z X, Cheng M F, Luo C K, et al. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution [J]. Opt Lett, 2019, 44(10): 2605-2608. doi:  10.1364/OL.44.002605
[22] Song X M, Liu B, Zhang H X, et al. Security-enhanced OFDM-PON with two-level coordinated encryption strategy at the bit-level and symbol-level [J]. Opt Express, 2020, 28(23): 35061-35073. doi:  10.1364/OE.403756
[23] Jiang L, Pan Y, Yi A L, et al. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication [J]. Opt Express, 2021, 29(8): 12750-12762. doi:  10.1364/OE.423098
[24] Jiang N, Zhao A K, Xue C, et al. Physical secure optical communication based on private chaotic spectral phase encryption/decryption [J]. Opt Lett, 2019, 44(7): 1536-1539. doi:  10.1364/OL.44.001536
[25] Zhao A K, Jiang N, Liu S Q, et al. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling [J]. Journal of Lightwave Technology, 2021, 39(8): 2288-2295. doi:  10.1109/JLT.2021.3051407
[26] Rulkov N F, Vorontsov M A, Llling L. Chaotic free-space laser communication over a turbulent channel [J]. Physical Review Letters, 2002, 89(27): 277905.
[27] Annovazzi-Lodi V, Aromataris G, Benedetti M, et al. Secure chaotic transmission on a free-space optics data link [J]. IEEE Journal of Quantum Electronics, 2008, 44(11): 1089-1095. doi:  10.1109/JQE.2008.2001929
[28] Mahmud N, El-Araby E, Shaw H, et al. Securing and auto-synchronizing commu-nication over free-space optics using quantum key distribution and chaotic systems [C]//Quantum Communications and Quantum Imaging XVI, SPIE, 2018, 10771: 107710U.
[29] Li M, Hong Y F, Song Y J, et al. Effect of controllable parameter synchronization on the ensemble average bit error rate of space-to-ground downlink chaos laser communication system [J]. Opt Express, 2018, 26(3): 2954-2964. doi:  10.1364/OE.26.002954
[30] Li M, Chen Y, Song Y J, et al. DOE effect on BER performance in MSK space uplink chaotic optical communication [J]. Chinese Optics Letters, 2020, 18(7): 070601. doi:  10.3788/COL202018.070601
[31] Guo Ruiqiang, Li Min, Wu Junpeng, et al. Space optical communication systems based on differential chaotic keying and its security analysis [J]. Infrared and Laser Engineering, 2020, 49(S1): 20200207. (in Chinese)
[32] El-Araby E, Namazi N. Chaotic architectures for secure free-space optical communication [C]//2016 26th International Conference on Field Programmable Logic and Applications (FPL), 2016: 1-5.
[33] Li M, Hong Y F, Wang S, et al. Radiation-induced mismatch effect on performances of space chaos laser communication systems [J]. Opt Lett, 2018, 43(20): 5134-5137. doi:  10.1364/OL.43.005134
[34] Niaz A, Qamar F, Ali M, et al. Performance analysis of chaotic FSO communication system under different weather conditions [J]. Transactions on Emerging Telecommunications Technologies, 2018, 30(1): e3486.
[35] Li M, Chen M W, Yang Y F, et al. Effect of amplifier spontaneous emission noise on performance of space chaotic laser communication systems [J]. IEEE Journal of Quantum Electronics, 2021, 57(4): 1-8.
[36] Yu Huilong, Bao Zhikang, Wang Xuan, et al. XY-2 satellite laser communication equipment PAT test in orbit [J]. Infrared and Laser Engineering, 2021, 50(5): 20200327. (in Chinese) doi:  10.3788/IRLA20200327