[1] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors, and enhanced non-linear phenomena [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. doi:  10.1109/22.798002
[2] Shelby R A. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79. doi:  10.1126/science.1058847
[3] Pendry J B. Negative refraction makes a perfect lens [J]. Physical Review Letters, 2000, 85(18): 3966. doi:  10.1103/PhysRevLett.85.3966
[4] Cheng Q, Cui T J, Jiang W X, et al. An omnidirectional electromagnetic absorber made of metamaterials [J]. New Journal of Physics, 2010, 12(6): 063006. doi:  10.1088/1367-2630/12/6/063006
[5] Liu R, Ji C, Mock J, et al. Broadband ground-plane cloak [J]. Science, 2009, 323(5912): 366-369. doi:  10.1126/science.1166949
[6] Landy N I, Sajuyigbe S, Mock J, et al. Perfect metamaterial absorber [J]. Physical Review Letters, 2008, 100(20): 207402. doi:  10.1103/PhysRevLett.100.207402
[7] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens [J]. Science, 2005, 308(5721): 534-537. doi:  10.1126/science.1108759
[8] Jiang W X, Qiu C W, Han T C, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging [J]. Advanced Materials, 2013, 25(48): 6963-6968. doi:  10.1002/adma.201303657
[9] Jiang W X, Ma H F, Cheng Q, et al. Illusion media: Generating virtual objects using realizable metamaterials [J]. Applied Physics Letters, 2010, 96(12): 121910. doi:  10.1063/1.3371716
[10] Lai Y, Jack N G, Chen H Y, et al. Illusion optics: the optical transformation of an object into another object [J]. Physical Review Letters, 2009, 102(25): 253902. doi:  10.1103/PhysRevLett.102.253902
[11] Jiang W X, Qiu C W, Han T C, et al. Creation of ghost illusions using wave dynamics in metamaterials [J]. Advanced Functional Materials, 2013, 23(32): 4028-4034. doi:  10.1002/adfm.201203806
[12] Chiu C N, Chang K P. A novel miniaturized-element frequency selective surface having a stable resonance [J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1175-1177. doi:  10.1109/LAWP.2009.2034766
[13] Sarabandi K, Behdad N. A frequency selective surface with miniaturized elements [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1239-1245. doi:  10.1109/TAP.2007.895567
[14] Liu S, Chen H, Cui T J. A broadband terahertz absorber using multi-layer stacked bars [J]. Applied Physics Letters, 2015, 106(15): 151601. doi:  10.1063/1.4918289
[15] Xiong H, Hong J S, Luo C M, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures [J]. Journal of Applied Physics, 2013, 114(6): 064109. doi:  10.1063/1.4818318
[16] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz meta-materials for linear polarization conversion and anomalous refraction [J]. Science, 2013, 340(6138): 1304-1307. doi:  10.1126/science.1235399
[17] Liu L X, Zhang X Q, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude [J]. Advanced Materials, 2014, 26(29): 5031-5036. doi:  10.1002/adma.201401484
[18] Gao X, Yang W L, Ma H F, et al. A reconfigurable broadband polarization converter based on an active metasurface [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086-6095. doi:  10.1109/TAP.2018.2866636
[19] Li S J, Li Y B, Zhang L, et al. Meta-microstructures: Programmable controls to scattering properties of a radiation array [J]. Laser & Photonics Review, 2021, 15(2): 2000449. doi:  10.1002/lpor.202170016
[20] Chen M, Epstein A, Eleftheriades G V. Design and experimental verification of a passive Huygens' metasurface lens for gain enhancement of frequency-scanning slotted-waveguide antennas [J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4678-4692. doi:  10.1109/TAP.2019.2911591
[21] Iqbal S, Liu S, Luo J, et al. Controls of transmitted electromagnetic waves for diverse functionalities using polarization-selective dual-band 2 bit coding metasurface [J]. Journal of Optics, 2020, 22(1): 015104. doi:  10.1088/2040-8986/ab5e18
[22] Li L L, Ruan H X, Liu C, et al. Machine-learning reprogrammable metasurface imager [J]. Nature Communications, 2019, 10(1): 1082. doi:  10.1038/s41467-019-09103-2
[23] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital meta-materials and programmable metamaterials [J]. Light: Science & Applications, 2014, 3: e218. doi:  10.1038/lsa.2014.99
[24] Zhu B, Chen K, Jia N, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface [J]. Scientific Reports, 2014, 4: 4971. doi:  10.1038/srep04971
[25] Yoon G, So S, Kim M, et al. Electrically tunable metasurface perfect absorber for infrared frequencies [J]. Nano Converg, 2017, 4(1): 36. doi:  10.1186/s40580-017-0131-0
[26] Park J, Kang J H, Liu X, et al. Electrically tunable Epsilon-Near-Zero (ENZ) metafilm absorbers [J]. Scientific Reports, 2015, 5: 15754. doi:  10.1038/srep15754
[27] Sun Y L, Zhang X G, Yu Q, et al. Infrared-controlled programmable metasurface [J]. Science Bulletin, 2020, 65(11): 883-888. doi:  10.1016/j.scib.2020.03.016
[28] Zhang X G, Jiang W X, Jiang H L, et al. An optically driven digital metasurface for programming electromagnetic functions [J]. Nature Electronics, 2020, 3(3): 165-171. doi:  10.1038/s41928-020-0380-5
[29] Zhang X G, Yu Q, Jiang W, et al. Programmable metasurfaces: Polarization-controlled dual-programmable metasurfaces [J]. Advanced Science, 2020, 7(11): 2070058. doi:  10.1002/advs.202070058
[30] Zeng X L, Gao M, Zhang L X, et al. Design of a tuneable and broadband absorber using a switchable transmissive/reflective FSS [J]. Iet Microwaves Antennas & Propagation, 2018, 12(7): 1211-1215.
[31] Ma Q, Hong Q R, Bai G D, et al. Editing arbitrarily linear polarizations using programmable metasurface [J]. Physical Review Applied, 2020, 13(2): 021003. doi:  10.1103/PhysRevApplied.13.021003
[32] Cui T J, Li L L, Liu S, et al. Information Metamaterial System s [J]. iScience, 2020, 23(8): 101403. doi:  10.1016/j.isci.2020.101403
[33] Zhang Z, Dai L, Chen X, et al. Active RIS vs. passive RIS: Which will prevail in 6 G? [J]. arXiv, 2021: 2103.15154v3.
[34] Huang C W, Hu S, Alexandropoulos G C, et al. Holographic MIMO surfaces for 6 G wireless networks: Opportunities, challenges, and trends [J]. IEEE Wireless Communications, 2020, 27(5): 118-125. doi:  10.1109/MWC.001.1900534
[35] Basar E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6 G [J]. IEEE Transactions Communications, 2020, 68(5): 3187-3196. doi:  10.1109/TCOMM.2020.2971486
[36] Basar E, Renzo M D, Rosny J D, et al. Wireless communications through reconfigurable intelligent surfaces [J]. IEEE Access, 2019, 7: 116753-116773. doi:  10.1109/ACCESS.2019.2935192
[37] Özdogan O, Björnson E, Larsson E G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling [J]. IEEE Wireless Communications Letters, 2020, 9(5): 581-585. doi:  10.1109/LWC.2019.2960779
[38] Ellingson S W. Path loss in reconfigurable intelligent surface-enabled channels[C]//2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021: 829-835.
[39] Boulogeorgos A–A A, Alexiou A. Pathloss modeling of reconfigurable intelligent surface assisted THz wireless systems[C]//IEEE International Conference on Communications, 2021: 1-6.
[40] Danufane F H, Renzo M D, Rosny J D, et al. On the path-loss of reconfigurable intelligent surfaces: An approach based on green’s theorem applied to vector fields [J]. IEEE Transactions on Communications, 2021, 69(8): 5573-5592. doi:  10.1109/TCOMM.2021.3081452
[41] Tang W, Chen M Z, Chen X Y, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement [J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421-439. doi:  10.1109/TWC.2020.3024887
[42] Tang W, Chen M Z, Chen X Y, et al. Path loss modeling and measurements for reconfigurable intelligent surfaces in the millimeter-wave frequency band [J]. arXiv, 2021: 2101.08607v2.
[43] Abeywickrama S, Zhang R, Wu Q Q. Intelligent reflecting surface: Practical phase shifter model and beamforming optimization [J]. IEEE Transactions on Communications, 2020, 68(9): 5849-5863. doi:  10.1109/TCOMM.2020.3001125
[44] Chen W, Bai L, Tang W, et al. Angle-dependent phase shifter model for reconfigurable intelligent surfaces: Does the angle-reciprocity hold? [J]. IEEE Communications Letters, 2020, 24(9): 2060-2064. doi:  10.1109/LCOMM.2020.2993961
[45] Gradoni G, Renzo M D. End-to-end mutual-coupling-aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances [J]. IEEE Wireless Communications Letters, 2021, 10(5): 938-942. doi:  10.1109/LWC.2021.3050826
[46] Qian X, Renzo M D. Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces [J]. IEEE Wireless Communications Letters, 2021, 10(6): 1183-1187. doi:  10.1109/LWC.2021.3061449
[47] Abrardo A, Dardari D, Renzo M D, et al. MIMO Interference channels assisted by reconfigurable intelligent surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance channel model [J]. arXiv, 2021: 2102.07155.
[48] Shen S, Clerckx B, Murch R. Modeling and architecture design of intelligent reflecting surfaces using scattering parameter network analysis [J]. arXiv, 2021: 2011.11362v2.
[49] Yang X, Wen C-K, Jin S. MIMO detection for reconfigurable intelligent surface-assisted millimeter wave systems [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1777-1792. doi:  10.1109/JSAC.2020.3000822
[50] Zheng B, You C, Zhang R. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design [J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4513-4525. doi:  10.1109/TWC.2021.3059945
[51] ElMossallamy M A, zhang H, Sultan R, et al. On spatial multiplexing using reconfigurable intelligent surface [J]. IEEE Wireless Communications Letters, 2021, 10(2): 226-230. doi:  10.1109/LWC.2020.3025030
[52] Hougne P D, Fink M, Lerosey G. Optimally diverse communication channels in disordered environments with tuned randomness [J]. Nature Electronics, 2019, 2: 36-41. doi:  10.1038/s41928-018-0190-1
[53] Chen W, Wen C K, Li X, et al. Channel customization for joint Tx-RISs-Rx design in hybrid mmWave systems [J]. arXiv, 2021: 2109.13058.
[54] Zhao J, Yang X, Dai J Y, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems [J]. National Science Review, 2019, 6(2): 231-238. doi:  10.1093/nsr/nwy135
[55] Dai J Y, Tang W K, Zhao J, et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface [J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi:  10.1002/admt.201900044
[56] Tang W K, Dai J Y, Chen M Z, et al. Programmable metasurface‐based RF chain‐free 8 PSK wireless transmitter [J]. Electronics Letters, 2019, 55(7): 417-420. doi:  10.1049/el.2019.0400
[57] Dai J Y, Tang W K, Yang L X, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface [J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1618-1627. doi:  10.1109/TAP.2019.2952460
[58] Chen M Z, Tang W K, Dai J Y, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface [J]. National Science Review, 2021: nwab134. doi:  10.1093/nsr/nwab134
[59] Cui T J, Liu S, Bai G D, et al. Direct transmission of digital message via programmable coding metasurface [J]. Research, 2019, 2019(2): 2584509. doi:  10.34133/2019/2584509
[60] Wan X, Zhang Q, Chen T Y, et al. Multichannel direct transmissions of near-field information [J]. Light: Science & Applications, 2019, 8(1): 1-8. doi:  10.1038/s41377-019-0169-3
[61] Zhao H, Shuang Y, Wei M L, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals [J]. Nature Communication, 2020, 11(1): 3926. doi:  10.1038/s41467-020-17808-y
[62] Zhang L, Chen M Z, Tang W K, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces [J]. Nature Electronics, 2021, 4(3): 218-227. doi:  10.1038/s41928-021-00554-4
[63] Cui T J, Liu S, Li L L. Information entropy of coding metasurface [J]. Light: Science & Applications, 2016, 5(11): e16172. doi:  10.1038/lsa.2016.172
[64] Wu H T, Bai G D, Liu S, et al. Information theory of metasurfaces [J]. National Science Review, 2020, 7(3): 561-571. doi:  10.1093/nsr/nwz195
[65] Dai J Y, Zhao J, Cheng Q, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface [J]. Light: Science & Applications, 2018, 7: 90. doi:  10.1038/s41377-018-0092-z
[66] Lu L, Li G Y, Swindlehurst A L, et al. An overview of massive MIMO: Benefits and challenges [J]. IEEE J Sel Top Signal Process, 2014, 8(5): 742-758. doi:  10.1109/JSTSP.2014.2317671