[1] 陈卫, 程礼, 李全通. 航空发动机监控技术[M]. 北京: 国防工业出版社, 2011.
[2] 柳迎春, 李洪伟, 李明. 军用航空发动机状态监控与故障诊断技术[M]. 北京: 国防工业出版社, 2015.
[3] Borrelli R, Riccio A, Tescione D, et al. Thermo-structural behaviour of an UHTC made nose cap of a reentry vehicle [J]. Acta Astronautica, 2009, 65(3-4): 442-456. doi:  10.1016/j.actaastro.2009.02.016
[4] 陈红波. ZrB2基超高温陶瓷材料催化/氧化性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[5] 刘文学. 核电站反应堆冷却剂系统在线仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[6] Liu Jianquan, Zhang Jiguo, Shi Jingda, et al. Analysis on the reactivity of reactor noncontrolled lifting rod based on RELAP5 [J]. Journal of Shanghai University of Electric Power, 2018, 34(4): 343-346, 355. (in Chinese)
[7] Liao C R, Wang D N. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing [J]. Photonic Sensors, 2013, 3(2): 97-101. doi:  10.1007/s13320-012-0060-9
[8] Ye L H, Shen Z P, Tong L M, et al. Optical properties of sapphire fiber under high temperature [C]//Advanced Materials and Devices for Sensing and Imaging, Proceedings of SPIE, 2002, 4919(1): 161Y.
[9] Dils R R. High-temperature optical fiber thermometer [J]. Journal of Applied Physics, 1983, 54(3): 1198-1201. doi:  10.1063/1.332199
[10] Shen Y H, Tong L M, Wang Y Q, et al. Sapphire-fiber thermometer ranging from 20 to 1 800 ℃ [J]. Applied Optics, 1999, 38(7): 1139-1143. doi:  10.1364/AO.38.001139
[11] 王高, 徐兆勇, 周汉昌. 基于蓝宝石光纤传感器的瞬态高温测试及校准技术[J]. 光电子. 激光, 2005, 16(4): 441-443.
[12] Wang A, Gollapudi S, Murphy K A, et al. Sapphire-fiber-based intrinsic Fabry-Perot interferometer [J]. Optics Letters, 1992, 17(14): 1021-1023. doi:  10.1364/OL.17.001021
[13] Wang A, Gollapudi S, May R G, et al. Advances in sapphire-fiber-based intrinsic interferometric sensors [J]. Optics Letters, 1992, 17(21): 1544-1546. doi:  10.1364/OL.17.001544
[14] Wang J J, Dong B, Lally E, et al. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers [J]. Optics Letters, 2010, 35(5): 619-621. doi:  10.1364/OL.35.000619
[15] Li W W, Liang T, Chen Y L, et al. Interface characteristics of sapphire direct bonding for high-temperature applications [J]. Sensors, 2017, 17(9): 2080. doi:  10.3390/s17092080
[16] Liu B, Yu Z H, Tian Z P, et al. Temperature dependence of sapphire fiber Raman scattering [J]. Optics Letters, 2015, 40(9): 2041-2044. doi:  10.1364/OL.40.002041
[17] Liu B, Yu Z H, Hill C, et al. Sapphire-fiber-based distributed high-temperature sensing system [J]. Optics Letters, 2016, 41(18): 4405-4408. doi:  10.1364/OL.41.004405
[18] Liu B, Buric M P, Chorpening B T, et al. Design and implementation of distributed ultra-high temperature sensing system with a single crystal fiber [J]. Journal of Lightwave Technology, 2018, 36(23): 5511-5520. doi:  10.1109/JLT.2018.2874395
[19] Grobnic D, Mihailov S J, Smelser C W, et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications [J]. Photonics Technology Letters IEEE, 2004, 16(11): 2505-2507. doi:  10.1109/LPT.2004.834920
[20] Mihailov S J, Grobnic D, Walker R B, et al. Femtosecond laser inscribed high temperature fiber Bragg grating sensors [C]//Proceedings of SPIE, 2007, 6770: 677009.
[21] Elsmann T, Habisreuther T, Graf A, et al. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation [J]. Optics Express, 2013, 21(4): 4591-4597. doi:  10.1364/OE.21.004591
[22] Yang S, Hu D, Wang A B. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings [J]. Optics Letters, 2017, 42(20): 4219-4222. doi:  10.1364/OL.42.004219
[23] Xu X Z, He J, Liao C R, et al. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique [J]. Optics Letters, 2018, 43(19): 4562-4565. doi:  10.1364/OL.43.004562
[24] Phomsakha V, Chang R, Djeu N. Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers [J]. Review of scientific Instruments, 1994, 65(12): 3860-3861. doi:  10.1063/1.1145179
[25] 郝晓剑. 瞬态表面高温测量与动态校准技术研究[D]. 太原: 中北大学, 2005.
[26] WAFER DICING. Sapphire optical properties and sapphire optical transmission [EB/OL]. [2022-09-29]. https://valleydesign.com/sapppic.html.
[27] Tong L M, Shen Y H, Chen F M, et al. Plastic bending of sapphire fibers for infrared sensing and power-delivery applications [J]. Applied Optics, 2000, 39(4): 494-501. doi:  10.1364/AO.39.000494
[28] Micromaterials. LHPG Sapphire Fibers[DB/OL]. (2019-09-10) [2022-09-29]. http://www.micromaterialsinc.com/specsFiber.html.
[29] 廖延彪, 黎敏, 张敏, 等. 光纤传感技术与应用 [M]. 北京: 清华大学出版社, 2009.
[30] Mihailov S J. Ultrafast laser inscribed fiber Bragg gratings for sensing applications [C]//SPIE Commercial + Scientific Sensing & Imaging, 2016, 9852: 98520P.
[31] Malitson I H, Murphy F V, Rodney W S. Refractive index of synthetic sapphire [J]. Journal of the Optical Society of America, 1958, 48(1): 72-73. doi:  10.1364/JOSA.48.000072
[32] 徐锡镇. 蓝宝石光纤光栅的制备及高温传感特性研究[D]. 深圳: 深圳大学, 2019.

Xu Xizhen. Research on the fabrication techniques and high-temperature sensing characteristics of sapphire fiber Bragg gratings[D]. Shenzhen: Shenzhen University, 2019. (in Chinese)
[33] 廖延彪. 光纤光学——原理与应用 [M]. 北京: 清华大学出版社, 2010.
[34] Mizunami T, Djambova T V, Niiho T, et al. Bragg gratings in multimode and few-mode optical fibers [J]. Journal of Lightwave Technology, 2000, 18(2): 230-235. doi:  10.1109/50.822797
[35] 沈永行. 荧光测温与辐射测温一体化的蓝宝石光纤温度传感器[D]. 杭州: 浙江大学, 1999.
[36] Mohammed W S, Mehta A, Johnson E G. Wavelength tunable fiber lens based on multimode interference [J]. Journal of Lightwave Technology, 2004, 22(2): 469-477. doi:  10.1109/JLT.2004.824379
[37] Yu H G, Wang Y, Xu Q Y, et al. Characteristics of multimode fiber Bragg gratings and their influences on external-cavity semiconductor lasers [J]. Journal of Lightwave Technology, 2006, 24(4): 1903-1912. doi:  10.1109/JLT.2006.871029
[38] Feng X X, Jiang Y, Xie S R, et al. Higher-order mode suppression technique for multimode sapphire fiber external Fabry-Perot interferometers [J]. Optics Express, 2022, 30(4): 4759-4767. doi:  10.1364/OE.450331
[39] Schmid M J, Müller, Mathias S. Measuring Bragg gratings in multimode optical fibers [J]. Optics Express, 2015, 23(6): 8087-8094. doi:  10.1364/OE.23.008087
[40] Chen C, Zhang X Y, Yu Y S, et al. Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing [J]. Journal of Lightwave Technology, 2018, 36(16): 3302-3308. doi:  10.1109/JLT.2018.2840699
[41] Busch M, Ecke W, Latka I, et al. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications [J]. Measurement Science & Technology, 2009, 20(11): 115301.
[42] Guo Q, Zhang Z D, Zheng Z M, et al. Parallel-integrated sapphire fiber Bragg gratings probe sensor for high temperature sensing [J]. IEEE Sensors Journal, 2022, 22(6): 5703-5708. doi:  10.1109/JSEN.2022.3149508
[43] Guo Q, Yu Y S, Zheng Z M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing [J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211. doi:  10.1109/TNANO.2018.2888536
[44] Xu X Z, He J, Liao C R, et al. Multi-layer, offset-coupled sapphire fiber Bragg gratings for high-temperature measure-ments [J]. Optics Letters, 2019, 44(17): 4211-4214. doi:  10.1364/OL.44.004211
[45] Xu X Z, He J, He J, et al. Efficient point-by-point Bragg grating inscription in sapphire fiber using femtosecond laser filaments [J]. Optics Letters, 2021, 46(11): 2742-2745. doi:  10.1364/OL.426407
[46] He J, He J, Xu X Z, et al. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing [J]. Photonics Research, 2021, 9(10): 2052-2059. doi:  10.1364/PRJ.434719
[47] Guo Q, Liu S R, Pan X P, et al. Femtosecond laser inscribed helical sapphire fiber Bragg gratings [J]. Optics Letters, 2021, 46(19): 4836-4839. doi:  10.1364/OL.439373
[48] Grobnic D, Mihailov S J, Ding H, et al. Single and low order mode interrogation of a multimode sapphire fiber Bragg grating sensor with tapered fibers [C]//Bruges, Belgium-deadline Past, International Society for Optics and Photonics, 2005.
[49] Ding H M, Grobnic D, Hnatovsky C, et al. Sapphire fiber Bragg grating coupled with graded-indexfiber lens [C]//2019 Photonics North (PN), 2019.
[50] Zhan C, Kim J H, Yin S, et al. High temperature sensing using higher-order-mode rejected sapphire fiber gratings [J]. Optical Memory & Neural Networks, 2007, 16(4): 204-210.
[51] Cheng Y J, Hill C, Liu B, et al. Modal reduction in single crystal sapphire optical fiber [J]. Optical Engineering, 2015, 54(10): 107103. doi:  10.1117/1.OE.54.10.107103
[52] Cheng Y J, Hill C, Liu B, et al. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber [J]. Optical Engineering, 2016, 55(6): 066101. doi:  10.1117/1.OE.55.6.066101
[53] Hill C, Homa D, Yu Z H, et al. Single mode air-clad single crystal sapphire optical fiber [J]. Applied Sciences, 2017, 7(5): 473. doi:  10.3390/app7050473
[54] Yang S, Homa D, Pickrell G, et al. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber [J]. Optics Letters, 2018, 43(1): 62-65. doi:  10.1364/OL.43.000062
[55] Dragic P, Hawkins T, Foy P, et al. Sapphire-derived all-glass optical fibers [J]. Nature Photonics, 2012, 6(9): 629-635.
[56] Xu J, Liu H H, Pang F F, et al. Cascaded Mach-Zehnder interferometers in crystallized sapphire-derived fiber for temperature-insensitive filters [J]. Optical Materials Express, 2017, 7(4): 1406-1413. doi:  10.1364/OME.7.001406
[57] Liu H, Pang F, Hong L, et al. Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing [J]. Optics Express, 2019, 27(5): 6201-6209. doi:  10.1364/OE.27.006201
[58] Wang S C, Yang T I, Jheng D Y, et al. Broadband and high-brightness light source: glass-clad Ti: sapphire crystal fiber [J]. Optics Letters, 2015, 40(23): 5594-5597. doi:  10.1364/OL.40.005594
[59] Lai C C, Lo C Y, Nguyen D H, et al. Atomically smooth hybrid crystalline-core glass-clad fibers for low-loss broadband wave guiding [J]. Optics Express, 2016, 24(18): 20089-20106. doi:  10.1364/OE.24.020089
[60] Elsmann T, Lorenz A, Yazd N S, et al. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers [J]. Optics Express, 2014, 22(22): 26825-26833. doi:  10.1364/OE.22.026825
[61] Grobnic D, Mihailov S J, Ballato J, et al. Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers [J]. Optica, 2015, 2(4): 313-322. doi:  10.1364/OPTICA.2.000313
[62] Guo Q, Jia Z X, Pan X P, et al. Sapphire-derived fiber Bragg gratings for high temperature sensing [J]. Crystals, 2021, 11(8): 946. doi:  10.3390/cryst11080946
[63] Jiang H M, Cao Z S, Yang R D, et al. Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications [J]. Thin Solid Films, 2013, 539: 81-87. doi:  10.1016/j.tsf.2013.05.006
[64] Bera S, Liu B, Picard Y N, et al. Fabrication and evaluation of sol-gel derived magnesium aluminate spinel-clad sapphire fiber [J]. Optical Fiber Technology, 2022, 68: 102801.
[65] Wang J J, Lally E M, Wang X P, et al. ZrO2 thin-film-based sapphire fiber temperature sensor [J]. Applied Optics, 2012, 51(12): 2129-2134. doi:  10.1364/AO.51.002129
[66] Shen Y H, Tong L M, Chen S Y. Performance stability of the sapphire fiber and cladding under high temperature [C]//Harsh Environment Sensors II. International Society for Optics and Photonics, 1999, 3852: 134-142.
[67] Luan X R, Yu R, Zhang Q Q, et al. Boron nitride coating of sapphire optical fiber for high temperature sensing applications [J]. Surface and Coatings Technology, 2019, 363: 203-209. doi:  10.1016/j.surfcoat.2019.02.002
[68] Chen S, Zhang Q, Luan X G, et al. Sapphire optical fiber with SiBCN coating prepared by chemical vapor deposition for high-temperature sensing applications [J]. Thin Solid Films, 2020, 709: 138242. doi:  10.1016/j.tsf.2020.138242
[69] Wang M H, Salter P S, Payne F P, et al. Single-mode sapphire fiber Bragg grating [J]. Optics Express, 2022, 30(9): 15482-15494. doi:  10.1364/OE.446664
[70] Grobnic D, Mihailov S J, Smelser C W, et al. Study of the sapphire Bragg gratings probed with multimode and single mode signal from fiber collimators and evanescent fiber tapers [C]//Proceedings of SPIE, 2007, 6796: 67961J.
[71] Elsmann T, Habisreuther T, Becker M, et al. Physical properties of fiber Bragg gratings in single crystalline sapphire fibers[C]// Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials, 2018: BM4A.2.
[72] Shi G N, Shurtz R, Pickrell G, et al. Point-by-point inscribed sapphire parallel fiber Bragg gratings in a fully multimode system for multiplexed high-temperature sensing [J]. Optics Letters, 2022, 47(18): 4725-4727.
[73] Buric M, Liu B, Huang S, et al. Modified single crystal fibers for distributed sensing applications [C]//SPIE Commercial + Scientific Sensing and Imaging, 2017.
[74] Habisreuther T, Elsmann T, Pan Z W, et al. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics [J]. Applied Thermal Engineering, 2015, 91: 860-865. doi:  10.1016/j.applthermaleng.2015.08.096
[75] Wilson B A, Petrie C M, Blue T E, et al. High-temperature effects on the light transmission through sapphire optical fiber [J]. Journal of the American Ceramic Society, 2018, 101(8): 3452-3459. doi:  10.1111/jace.15515
[76] Yang S, Homa D, Heyl H, et al. Application of sapphire-fiber-Bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant [J]. Sensors, 2019, 19(14): 3211. doi:  10.3390/s19143211
[77] He J, Xu X Z, Du B, et al. Stabilized ultra-high-temperature sensors based on inert gas-sealed sapphire fiber Bragg gratings [J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12359-12366.
[78] Eisermann R, Krenek S, Habisreuther T, et al. Metrological characterization of a high-temperature hybrid sensor using thermal radiation and calibrated sapphire fiber Bragg grating for process monitoring in harsh environments [J]. Sensors, 2022, 22(3): 1034. doi:  10.3390/s22031034
[79] Mihailov S J, Grobnic D, Smelser C W. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings [J]. Optics Letters, 2010, 35(16): 2810-2812. doi:  10.1364/OL.35.002810
[80] Ding Xudong, Zhang Yumin, Song Yanming, et al. Response characteristics of pure-quartz-core fiber Bragg grating under high temperature strain [J]. Chinese Journal of Lasers, 2017, 44(11): 1106003. (in Chinese)
[81] Habisreuther T, Elsmann T, Graf A, et al. High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings [J]. IEEE Photonics Journal, 2016, 8(3): 6802608.
[82] Chen H, Buric M, Ohodnicki P R, et al. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing [J]. Applied Physics Reviews, 2018, 5(1): 011102. doi:  10.1063/1.5010184
[83] Wilson B A, Blue T E. Creation of an internal cladding in sapphire optical fiber using the 6 Li(n, α)3 H reaction [J]. IEEE Sensors Journal, 2017, 17(22): 7433-7439. doi:  10.1109/JSEN.2017.2756448
[84] Wilson B A, Blue T E. Quasi-distributed temperature sensing using type-II fiber Bragg gratings in sapphire optical fiber to temperatures up to 1300℃ [J]. IEEE Sensors Journal, 2018, 18(20): 8345-8351. doi:  10.1109/JSEN.2018.2865910