[1] 柴麒敏, 郭虹宇, 刘昌义, 等. 全球气候变化与中国行动方案——“十四五”规划期间中国气候治理(笔谈)[J]. 阅江学刊, 2020, 12(6): 36-58. doi:  10.13878/j.cnki.yjxk.20210107.001
[2] Zhou Chenhao, Mao Qinyu, Xu Xiao, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone [J]. Scientia Sinica Vitae, 2016, 46(4): 475-486. (in Chinese) doi:  10.1360/N052016-00105
[3] Jiang Xingwei, He Xianqiang, Lin Mingsen, et al. Progress on ocean satellite remote sensing application in China [J]. Haiyang Xuebao, 2019, 41(10): 113-124. (in Chinese) doi:  10.3969/j.issn.0253−4193.2019.10.007
[4] Tang Junwu, Chen Ge, Chen Weibiao, et al. Three dimensional remote sensing for oceanography and the Guanlan ocean profiling Lidar [J]. National Remote Sensing Bulletin, 2021, 25(1): 460-500. (in Chinese)
[5] Zhu Shouzheng, Bu Lingbing, Liu Jiqiao, et al. Study on airborne high spectral resolution lidar detection optical properties and pollution of atmospheric aerosol [J]. Chinese Journal of Lasers, 2021, 48(17): 1710003. (in Chinese)
[6] Schulien J A, Behrenfeld M J, Hair J W, et al. Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar [J]. Optics Express, 2017, 25(12): 13577-13587. doi:  10.1364/OE.25.013577
[7] Schulien J A, Penna A D, Gaube P, et al. Shifts in phytoplankton community structure across an anticyclonic eddy revealed from high spectral resolution lidar scattering measurements [J]. Frontiers in Marine Science, 2020, 7: 493.
[8] Liu Zhipeng, Liu Dong, Xu Peituo, et al. Retrieval of seawater optical properties with an oceanic lidar [J]. Journal of Remote Sensing, 2019, 23(5): 944-951. (in Chinese)
[9] Zhou Yudi, Liu Dong, Xu Peituo, et al. Detection atmospheric-water optical property profiles with a polarized lidar [J]. Journal of Remote Sensing, 2019, 23(1): 108-115. (in Chinese)
[10] He Yan, Hu Shanjiang, Chen WeiBiao, et al. Research progress of domestic Airborne Dual-Frequency Lidar detection technology [J]. Laser and Optoelectronics Progress, 2018, 55(8): 082801. (in Chinese)
[11] Hu Shanjian, He Yan, Chen Weibiao, et al. Design of airbone dual-frequency laser radar system [J]. Infrared and Laser Engineering, 2018, 47(9): 0930001. (in Chinese) doi:  10.3788/IRLA201847.0930001
[12] Liu Q, Liu D, Zhu X, et al. Optimum wavelength of spaceborne oceanic lidar in penetration depth [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107310. doi:  10.1016/j.jqsrt.2020.107310
[13] Zhu Peizhi, Liu Bingyi, Kong Xiaojuan, et al. Estimation of chlorophyll profile detection capability of spaceborne oceanographic lidar [J]. Infrared and Laser Engineering, 2021, 50(2): 20200164. (in Chinese) doi:  10.3788/IRLA20200164
[14] Jerlov N G. Marine Optics [M]. Amsterdam: Elsevier, 1976.
[15] Tang Junwu, Zhu Peizhi, Liu Bingyi, et al. Polarized light scattering of particulate matter in detection of oceanographic profiling lidar [J]. Acta Optica Sinica, 2022, 42(12): 1200001. (in Chinese)
[16] She C Y. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars [J]. Applied Optics, 2001, 40(27): 4875-4884. doi:  10.1364/AO.40.004875
[17] Xu Jiaqi, Wang Yuanqing, Xu Yangrui, et al. Research progress of ocean environment laser remote sensing based on Brillion scattering [J]. Infrared and Laser Engineering, 2021, 50(6): 20211036. (in Chinese) doi:  10.3788/IRLA20211036
[18] Zhang Yupeng, Liu Dong, Shen Xue, et al. Design of iodine absorption cell for high-spectral-resolution lidar [J]. Optics Express, 2017, 25(14): 15913-15926.