[1] Danileĭko Y K, Manenkov A A, Nechitaĭlo V S. The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities [J]. Sov J Quantum Electron, 1978, 8(1): 116. doi:  10.1070/QE1978v008n01ABEH008443
[2] Negres R A, Feit M D, Demos S G. Dynamics of material modifications following laser-breakdown in bulk fused silica [J]. Optics Express, 2010, 18(10): 10642-10649. doi:  10.1364/OE.18.010642
[3] Demos S G, Hoffman B N, Carr C W, et al. Mechanisms of laser-induced damage in absorbing glasses with nanosecond pulses [J]. Optics Express, 2019, 27: 9975-9986. doi:  10.1364/OE.27.009975
[4] Fu Xinghai, Mireille C, Gallais L, et al. Laser-induced damage in scandium, hafnium, aluminum oxides composites with silica in the infrared [J]. Applied Optics, 2014, 53(4): A392-8. doi:  10.1364/AO.53.00A392
[5] 马宏平, 程鑫彬, 张锦龙, 等. 不同工艺制备的人工节瘤的损伤生长特性[J]. 红外与激光工程, 2017, 46(5): 0521001. doi:  10.3788/IRLA201746.0521001

Ma Hongping, Cheng Xinbin, Zhang Jinlong, et al. Damage growth characteristics artificial nodules prepared by different processes [J]. Infrared and Laser Engineering, 2017, 46(5): 0521001. (in Chinese doi:  10.3788/IRLA201746.0521001
[6] 陈金忠, 王敬, 马瑞玲, 等. 纳秒激光诱导等离子体发射光谱中的自吸收效应[J]. 强激光与粒子束, 2015, 27(1): 119-124.

Chen Jinzhong, Wang Jing, Ma Ruiling, et al. Self-absorption effect in nanosecond laser induced plasma emission spectrum [J]. High Power Laser and Particle Beams, 2015, 27(1): 119-124. (in Chinese
[7] 高翔, 邱荣, 周国瑞, 等. 熔石英亚表面杂质对激光损伤概率的影响[J]. 红外与激光工程, 2017, 46(4): 0406002. doi:  10.3788/IRLA201746.0406002

Gao Xiang, Qiu Rong, Zhou Guorui, et al. Effect of subsurface impurities of fused silica on laser induced damage probability [J]. Infrared and Laser Engineering, 2017, 46(4): 0406002. (in Chinese doi:  10.3788/IRLA201746.0406002
[8] 余霞, 徐娇, 张彬. 表面杂质和节瘤缺陷诱导薄膜元件热熔融损伤[J]. 红外与激光工程, 2018, 47(12): 1243003. doi:  10.3788/IRLA201847.1243003

Yu Xia, Xu Jiao, Zhang Bin. Thermal melting damage of thin film components induced by surface impurities and nodule defects [J]. Infrared and Laser Engineering, 2018, 47(12): 1243003. (in Chinese doi:  10.3788/IRLA201847.1243003
[9] Maxime Chambonneau, Jean-Luc Rullier, Pierre Grua, et al. Wavelength dependence of the mechanisms governing the formation of nanosecond laser-induced damage in fused silica [J]. Optics Express, 2018, 26: 21819-21830. doi:  10.1364/OE.26.021819
[10] Demos S, Staggs M, Minoshima K, et al. Characterization of laser induced damage sites in optical components [J]. Optics Express, 2002, 10(25): 1444-1450. doi:  10.1364/OE.10.001444
[11] Demos S G, Raman R N, Negres R A. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses [J]. Optics Express, 2013, 21(4): 4875. doi:  10.1364/OE.21.004875
[12] Raman R N, Negres R A, Demos S G. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses [J]. Applied Physics Letters, 2011, 98(5): 051901. doi:  10.1063/1.3549193
[13] Raman R N, Elhadj S, Negres R A, et al. Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses [J]. Optics Express, 2015, 20(25): 27708-27724.
[14] Demos S G, Negres R A. Morphology of ejected particles and impact sites on intercepting substrates following exit-surface laser damage with nanosecond pulses in silica [J]. Optical Engineering, 2016, 56(1): 011016. doi:  10.1117/1.OE.56.1.011016
[15] Demos S G, Carr C W, Cross D A. Mechanisms of surface contamination in fused silica by means of laser-induced electrostatic effects [J]. Optics Letters, 2017, 42: 2643-2646. doi:  10.1364/OL.42.002643
[16] Zhang K, Cui Z Y, Sun P, et al. Investigation of impurity transport using laser blow-off technique in the HL-2A Ohmic and ECRH plasmas [J]. Chinese Physics B, 2016, 25: 065202. doi:  10.1088/1674-1056/25/6/065202