[1] Ausherman D A, Kozma A, Walker J L, et al. Developments in radar imaging [J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(4): 363-400.
[2] Nan Y J, Huang X J, Guo Y J. Generalized continuous wave synthetic aperture radar for high resolution and wide swath remote sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7217-7229. doi:  10.1109/TGRS.2018.2849382
[3] Zhang L, Qiao Z J, Xing M D, et al. High-resolution ISAR imaging by exploiting sparse apertures [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997-1008. doi:  10.1109/TAP.2011.2173130
[4] Yang J Y. Multi-directional evolution trend and law analysis of radar ground imaging technology [J]. Journal of Radars, 2019, 8(6): 669-693. (in Chinese)
[5] Liu W T, Sun S, Hu H K, et al. Progress and prospect for ghost imaging of moving objects [J]. Laser and Optoelectronics Progress, 2021, 58(10): 3-16. (in Chinese)
[6] Guo Y Y, Wang D J, He X Z, et al. Super-resolution imaging method based on random radiation radar array[C]//2012 IEEE International Conference on Imaging Systems and Techniques Proceedings, Manchester, 2012: 1-6.
[7] Guo Y Y, He X Z, Wang D J. A novel super-resolution imaging method based on stochastic radiation radar array [J]. Measurement Science and Technology, 2013, 24(7): 074013. doi:  10.1088/0957-0233/24/7/074013
[8] He X Z. The information processing methods and simulations in microwave staring correlated imaging[D]. Hefei: University of Science and Technology of China, 2013. (in Chinese)
[9] Li D Z. Radar coincidence imaging technique research[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
[10] Shao Z L. Design on spatial-temporal random radiation field for compressed sensing based microwave imaging radar[D]. Xi’an: Xidian University, 2014. (in Chinese)
[11] Xu R. Study on new systems and techniques for improving radar imaging performances[D]. Xi’an: Xidian University, 2015. (in Chinese)
[12] Chen J P, Zhu W G, Zhang G. A new method of microwave relating imaging [J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(2): 196-198. (in Chinese) doi:  10.3969/j.issn.1673-1522.2012.02.016
[13] Shao P, Xu R, Li H L, et al. The research on bjorck-schmidt orthogonalization for microwave staring imaging [J]. Journal of Signal Processing, 2014, 30(4): 450-456. (in Chinese)
[14] Zhu S T, Zhang A X, Xu Z, et al. Radar coincidence imaging with random microwave source [J]. IEEE Antennas Wireless Propagation Letters, 2015, 14: 1239-1242. doi:  10.1109/LAWP.2015.2399977
[15] Cheng Y Q, Zhou X L, Xu X W, et al. Radar coincidence imaging with stochastic frequency modulated array [J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 8(5): 513-524.
[16] Xu X W. Research on radar coincidence imaging with array position error[D]. Changsha: National University of Defense Technology, 2015. (in Chinese)
[17] Zhou X L. Theory and methods of sparsity-based microwave coincidence imaging[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[18] Zha G F. Microwave coincidence imaging technique research for moving target[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)
[19] Zhu S T, He Y C, Chen X M, et al. Resolution threshold analysis of the microwave radar coincidence imaging [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 2232-2243. doi:  10.1109/TGRS.2019.2955789
[20] Wang T Y. Research on distributed radar sparse imaging technologies[D]. Hefei: University of Science and Technology of China, 2015. (in Chinese)
[21] Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Englewood: Prentice Hall, 1993.
[22] Albert A. Regress and the Moore-Penrose Pseudoinverse[M]. New York: Academic Press, 1972.
[23] Golub G H, Van Loan C F. Matrix Computations[M]. 3rd ed. Baltimore: Johns Hopkins University Press, 1996.
[24] Yang J G. Research on sparsity-driven regularization radar imaging theory and method[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
[25] Phillips D L. A technique for the numerical solution of certain integral equations of the first kind [J]. Journal of the Association for Computing Machinery, 1962, 9: 84-97. doi:  10.1145/321105.321114
[26] Tikhonov A N. Solution of incorrectly formulated problems and the regularization method [J]. Soviet Mathematics-Doklady, 1963, 4: 1035-1038.
[27] Potter L C, Chiang D, Carriere R, et al. A GTD-based parametric model for radar scattering [J]. IEEE Transactions on Antennas Propagation, 1995, 32(10): 1058-1067.
[28] Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi:  10.1109/MSP.2007.4286571
[29] Donoho D L. For most large underdetermined systems of linear equations, the minimal L1 norm solution is also the sparsest solution [J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829. doi:  10.1002/cpa.20132
[30] Candès E J, Wakin M B. An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acquisition [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi:  10.1109/MSP.2007.914731
[31] Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159. doi:  10.1137/S003614450037906X
[32] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi:  10.1109/TIT.2007.909108
[33] Wipf D P, Rao B D. Sparse Bayesian learning for basis selection [J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164. doi:  10.1109/TSP.2004.831016
[34] Guo Y, Ma Y, Wang D. A novel microwave staring imaging method based on short-time integral stochastic radiation fields[C]//2013 IEEE International Conference on Imaging Systems and Techniques, 2013: 425-430.
[35] Ma Y P. Preliminary research on microwave staring correlated imaging based on temporal-spatial stochastic radiation fields[D]. Hefei: University of Science and Technology of China, 2013. (in Chinese)
[36] Xu X W, Cheng Y Q, Qin Y L, et al. Analysis of array position error in radar coincidence imaging [J]. Modern Radar, 2016, 38(3): 32-37. (in Chinese)
[37] Xu X W, Zhou X L, Cheng Y Q, et al. Radar coincidence imaging with array position error[C]//2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC 2015), 2015: 119-122.
[38] Yi M L. Study on compressed sensing algorithm for microwave staring imaging[D]. Xi’an: Xidian University, 2014. (in Chinese)
[39] Zhou X, Wang H, Cheng Y, et al. Sparse auto-calibration for radar coincidence imaging with gain-phase error [J]. Sensors, 2015, 15: 27611-27624. doi:  10.3390/s151127611
[40] Zhou X, Wang H, Cheng Y, et al. Radar coincidence imaging with phase error using Bayesian hierarchical prior modeling [J]. Journal of Electronic Imaging, 2016, 25(1): 013018. doi:  10.1117/1.JEI.25.1.013018
[41] Zhou X, Wang H, Cheng Y, et al. An ExCoV-based method for joint radar coincidence imaging and gain-phase error calibration [J]. Mathematical Problems in Engineering, 2016, 8(5): 513-524.
[42] Zheng Y. Array self-calibration for MIMO radar with gain-phase error[D]. Xi’an: Xidian University, 2015. (in Chinese)
[43] Zhou X, Wang H, Cheng Y, et al. Off-grid radar coincidence imaging based on block sparse Bayesian learning[C]//2015 IEEE Workshop on Signal Processing Systems (SiPS), 2015: 440-443.
[44] Li D, Li X, Cheng Y, et al. Radar coincidence imaging under grid mismatch [J]. ISRN Signal Processing, 2014, 987803: 1-8.
[45] Luo C S. Research on microwave correlated sparse imaging of moving target[D]. Hefei: University of Science and Technology of China, 2016. (in Chinese)
[46] Wang G C. Research on microwave staring correlated imaging of low-rank and large scene[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese)
[47] Meng Q Q. The research on information processing in high resolution microwave staring correlated imaging[D]. Hefei: University of Science and Technology of China, 2016. (in Chinese)
[48] Cao K C, Cheng Y Q, Liu K, et al. Off-grid microwave coincidence imaging based on directional grid fission [J]. IEEE Antennas Wireless Propagation Letters, 2020, 19(12): 2497-2501. doi:  10.1109/LAWP.2020.3037100
[49] Cao K C, Cheng Y Q, Liu K, et al. Reweighted-dynamic-grid-based microwave coincidence imaging with grid mismatch[J/OL]. IEEE Transactions on Geoscience and Remote Sensing(2021-06-15)https://ieeexplore.ieee.org/document/9455128/authors#authors.
[50] Zhang H L. Research on sparse reconstruction technology for microwave staring correlated imaging of moving target[D]. Hefei: University of Science and Technology of China, 2015. (in Chinese)
[51] Li D Z, Li X, Cheng Y Q, et al. Radar coincidence imaging in the presence of target-motion-induced error [J]. Journal of Electronic Imaging, 2014, 23(2): 023014. doi:  10.1117/1.JEI.23.2.023014
[52] Li D Z, Li X, Qin Y L, et al. Radar coincidence imaging: an instantaneous imaging technique with stochastic signals [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2261-2277. doi:  10.1109/TGRS.2013.2258929
[53] Yu H. Research on sparse imaging algorithms for correlated imaging systems[D]. Hefei: University of Science and Technology of China, 2014. (in Chinese)
[54] Yang H T, Wang K Z, Yuan B, et al. Microwave staring imaging based on range pulse compression and azimuth wavefront modulation[C]//10th European Conference on Synthetic Aperture Radar (EUSAR 2014), 2014: 1-4.
[55] Yuan Y, Li C R, Li X H, et al. Sensitivity analysis on radiant performance of microwave intensity correlation image [J]. Remote Sensing Technology and Application, 2015, 1(30): 155-162. (in Chinese)
[56] Zhou X, Wang H, Cheng Y, et al. Radar coincidence imaging for off-grid target using frequency-hopping waveforms [J]. International Journal of Antennas and Propagation, 2016, 2016: 1-16. doi:  10.1155/2016/8523143
[57] Zhou X L, Wang H Q, Cheng Y Q, et al. Radar coincidence imaging by exploiting the continuity of extended target [J]. IET Radar, Sonar & Navigation, 2017, 11(1): 60-69.
[58] Zhou X, Wang H, Cheng Y, et al. Off-grid radar coincidence imaging based on variational sparse Bayesian learning [J]. Mathematical Problems in Engineering, 2016, 2016: 1782178.
[59] Cao K C, Cheng Y Q, Liu K, et al. Coherent-detecting and incoherent-modulating microwave coincidence imaging with off-grid errors[J/OL]. IEEE Geoscience and Remote Sensing Letters(2021-11-13)https://ieeexplore.ieee.org/document/9612163.
[60] Dai Q. Research on radar coincidence imaging technology in low SNR[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
[61] Cao K C. Research on radar coincidence imaging with model mismatch[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[62] Yuan T Z. Research on radar imaging using electromagnetic vortex wave[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[63] Liu K. Study on the theory and method of electromagnetic vortex imaging[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[64] Laska J N, Wakin M B, Duarte M F, et al. A new compressive imaging camera architecture using optical-domain compression[C]//Conference on Computational Imaging IV, 2006: 606509.
[65] Hunt J D. Metamaterials for computational imaging[D]. Durham: Duke University, 2013.
[66] Duan P, Wang Y Y, Xu D G, et al. Single pixel imaging with tunable terahertz parametric oscillator [J]. Applied Optics, 2016, 55(13): 3670-3675. doi:  10.1364/AO.55.003670
[67] Chen S, Luo C G, Deng B, et al. Study on coding strategies for radar coded-aperture imaging in terahertz band [J]. Journal of Electronic Imaging, 2017, 26(5): 053022.
[68] Gan F J, Luo C G, Liu X Y, et al. Fast terahertz coded-aperture imaging based on convolutional neural network [J]. Applied Sciences-Basel, 2020, 10(8): 2661. doi:  10.3390/app10082661
[69] Gan F J, Yuan Z Y, Luo C G, et al. Phaseless terahertz coded-aperture imaging based on deep generative neural network [J]. Remote Sensing, 2021, 13(671): 1-15.
[70] Liu X Y, Wang H Q, Luo C G, et al. Terahertz coded-aperture imaging for moving targets based on incoherent detection array [J]. Applied Optics, 2021, 60(23): 6809-6817. doi:  10.1364/AO.428457
[71] Luo C G, Deng B, Wang H Q, et al. High-resolution terahertz coded-aperture imaging for near-field three-dimensional target [J]. Applied Optics, 2019, 58(12): 3293-3300. doi:  10.1364/AO.58.003293
[72] Yang H T, Zhang L J, Gao Y S, et al. Azimuth wavefront modulation using plasma lens array for microwave staring imaging[C]//IEEE Geoscience and Remote Sensing Symposium, 2015: 4276-4279.
[73] Sleasman T, Boyarsk M, Imani M F, et al. Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies [J]. Journal of the Optical Society of America B, 2016, 33(6): 1098-1111. doi:  10.1364/JOSAB.33.001098
[74] Hunt J, Gollub J, Driscoll T, et al. Metamaterial microwave holographic imaging system [J]. Journal of the Optical Society of America A, 2014, 31(10): 2109-2119. doi:  10.1364/JOSAA.31.002109
[75] Gollub J N, Yurduseven O, Trofatter K P, et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale [J]. Scientific Reports, 2017, 7: 42650. doi:  10.1038/srep42650
[76] Andreas P, Claire M W, Smith D R, et al. Enhanced resolution stripmap mode using dynamic metasurface antennas [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3764-3772. doi:  10.1109/TGRS.2017.2679438
[77] Sleasman T, Boyarsky M, Pulido-Mancera L, et al. Experimental synthetic aperture radar with dynamic metasurfaces [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6864-6877. doi:  10.1109/TAP.2017.2758797
[78] Cui T J, Wu R Y, Wu W, et al. Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies [J]. Journal of Physics D:Applied Physics, 2017, 50(40): 404002. doi:  10.1088/1361-6463/aa85bd
[79] Liu S, Cui T J. Concepts, working principles, and applications of coding and programmable metamaterials [J]. Advanced Optical Materials, 2017, 5(22): 1700624. doi:  10.1002/adom.201700624
[80] Wang L, Li L, Li Y, et al. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface [J]. Scientific Reports, 2016, 6: 26959. doi:  10.1038/srep26959
[81] Li Y B, Li L L, Xu B B, et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging [J]. Scientific Reports, 2016, 6: 23731. doi:  10.1038/srep23731
[82] Zhao M R, Zhu S T, Huang H L, et al. Frequency-polarization-sensitive metasurface antenna for coincidence imaging [J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(7): 1274-1278. doi:  10.1109/LAWP.2021.3077556
[83] Zhao M R, Zhu S T, Huang H L, et al. Frequency-diverse metamaterial cavity antenna for coincidence imaging [J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 1103-1107. doi:  10.1109/LAWP.2021.3073679
[84] Chen S. Research on technology of three-dimensional terahertz coded-aperture imaging[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
[85] Luo Z L. Research on coded aperture imaging based on programmable metasurface[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)