[1] Pelliccia D, Rack A, Scheel M, et al. Experimental x-ray ghost imaging [J]. Physical Review Letters, 2016, 117(11): 113902. doi:  10.1103/PhysRevLett.117.113902
[2] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X rays [J]. Physical Review Letters, 2016, 117(11): 113901. doi:  10.1103/PhysRevLett.117.113901
[3] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source [J]. Optics Express, 2017, 25(13): 14822−14828. doi:  10.1364/OE.25.014822
[4] Tian N, Guo Q, Wang A, et al. Fluorescence ghost imaging with pseudothermal light [J]. Optics Letters, 2011, 36(16): 3302−3304. doi:  10.1364/OL.36.003302
[5] Tanha M, Ahmadi-Kandjani S, Kheradmand R, et al. Computational fluorescence ghost imaging [J]. The European Physical Journal D, 2013, 67(2): 44. doi:  10.1140/epjd/e2012-30341-8
[6] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope [J]. Optica, 2014, 1(5): 285−289. doi:  10.1364/OPTICA.1.000285
[7] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors [J]. Scientific Reports, 2015, 5: 10669. doi:  10.1038/srep10669
[8] Liu S, Yao X R, Liu X F, et al. Pile-up effect in an infrared single-pixel compressive LiDAR system [J]. Optics Express, 2019, 27(16): 22138−22146. doi:  10.1364/OE.27.022138
[9] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing [J]. Applied Physics Letters, 2008, 93(12): 121105. doi:  10.1063/1.2989126
[10] Ma Y, Grant J, Saha S, et al. Terahertz single pixel imaging based on a Nipkow disk [J]. Optics Letters, 2012, 37(9): 1484−1486. doi:  10.1364/OL.37.001484
[11] Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry [J]. Science, 2018, 360(6394): 1246−1251. doi:  10.1126/science.aan0096
[12] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination [J]. Optics Express, 2018, 26(3): 2427−2434. doi:  10.1364/OE.26.002427
[13] Zhao W, Chen H, Yuan Y, et al. Ultrahigh-speed color imaging with single-pixel detectors at low light level [J]. Physical Review Applied, 2019, 12(3): 034049. doi:  10.1103/PhysRevApplied.12.034049
[14] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging [J]. Proceedings of the National Academy of Sciences, 2012, 109(26): E1679−E1687. doi:  10.1073/pnas.1119511109
[15] Jin S, Hui W, Wang Y, et al. Hyperspectral imaging using the single-pixel Fourier transform technique [J]. Scientific Reports, 2017, 7: 45209. doi:  10.1038/srep45209
[16] Amiot C, Ryczkowski P, Friberg A T, et al. Supercontinuum spectral-domain ghost imaging [J]. Optics Letters, 2018, 43(20): 5025−5028. doi:  10.1364/OL.43.005025
[17] Rousset F, Ducros N, Peyrin F, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera [J]. Optics Express, 2018, 26(8): 10550−10558. doi:  10.1364/OE.26.010550
[18] Xiao F, Zhou L, Chen W. Direct Single-step measurement of Hadamard spectrum using single-pixel optical detection [J]. IEEE Photonics Technology Letters, 2019, 31(11): 845−848. doi:  10.1109/LPT.2019.2910172
[19] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints [J]. Applied Physics Letters, 2012, 101(14): 141123. doi:  10.1063/1.4757874
[20] Ma S, Liu Z, Wang C, et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning [J]. Optics Express, 2019, 27(9): 13219−13228. doi:  10.1364/OE.27.013219
[21] Shi D, Yin K, Huang J, et al. Fast tracking of moving objects using single-pixel imaging [J]. Optics Communications, 2019, 440: 155−162. doi:  10.1016/j.optcom.2019.02.006
[22] Sun S, Lin H, Xu Y, et al. Tracking and imaging of moving objects with temporal intensity difference correlation [J]. Optics Express, 2019, 27(20): 27851−27861. doi:  10.1364/OE.27.027851
[23] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging [J]. Optics Letters, 2010, 35(14): 2391−2393. doi:  10.1364/OL.35.002391
[24] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging [J]. Applied Physics Letters, 2012, 101(10): 101108. doi:  10.1063/1.4748875
[25] Chen W, Chen X. Marked ghost imaging [J]. Applied Physics Letters, 2014, 104(25): 251109. doi:  10.1063/1.4879843
[26] Zafari M, Ahmadi-Kandjani S. Optical encryption with selective computational ghost imaging [J]. Journal of Optics, 2014, 16(10): 105405. doi:  10.1088/2040-8978/16/10/105405
[27] Zhu Y, Shi J, Li H, et al. Three-dimensional ghost imaging based on periodic diffraction correlation imaging [J]. Chinese Optics Letters, 2014, 12(7): 071101. doi:  10.3788/COL201412.071101
[28] Yu H, Li E, Gong W, et al. Structured image reconstruction for three-dimensional ghost imaging lidar [J]. Optics Express, 2015, 23(11): 14541−14551. doi:  10.1364/OE.23.014541
[29] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint [J]. Scientific Reports, 2016, 6: 26133. doi:  10.1038/srep26133
[30] Zhang F, Zhang K, Cao J, et al. Study on the performance of three-dimensional ghost image affected by target [J]. Pattern Recognition Letters, 2019, 125: 508-513.
[31] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review [J]. Sensors, 2019, 19(3): 732. doi:  10.3390/s19030732
[32] Mertz P, Gray F. Atheory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television [J]. Bell System Technical Journal, 1934, 13(3): 464−515. doi:  10.1002/j.1538-7305.1934.tb00675.x
[33] Chang P I, Huang P, Maeng J, et al. Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy [J]. Review Of Scientific Instruments, 2011, 82(6): 063703. doi:  10.1063/1.3600558
[34] Stiff-Roberts A D, Chakrabarti S, Pradhan S, et al. Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors [J]. Applied Physics Letters, 2002, 80(18): 3265−3267. doi:  10.1063/1.1476387
[35] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429. doi:  10.1103/PhysRevA.52.R3429
[36] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation [J]. Physical Review Letters, 2004, 93(9): 093602. doi:  10.1103/PhysRevLett.93.093602
[37] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802. doi:  10.1103/PhysRevA.78.061802
[38] Donoho D L. Compressed sensing [J]. IEEE Transactions On Information Theory, 2006, 52(4): 1289−1306. doi:  10.1109/TIT.2006.871582
[39] Emmanuel-J C, Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21−30. doi:  10.1109/MSP.2007.914731
[40] Richard-G B. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118. doi:  10.1109/MSP.2007.4286571
[41] Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging camera architecture using optical-domain compression[C]//Computational Imaging IV. International Society for Optics and Photonics, 2006, 6065: 606509.
[42] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83−91. doi:  10.1109/MSP.2007.914730
[43] Magalhães F, Araújo F M, Correia M, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing [J]. Optical Engineering, 2012, 51(7): 071406. doi:  10.1117/1.OE.51.7.071406
[44] Magalhães F, Araújo F M, Correia M V, et al. Active illumination single-pixel camera based on compressive sensing [J]. Applied Optics, 2011, 50(4): 405−414. doi:  10.1364/AO.50.000405
[45] Howland G A, Howell J C. Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera [J]. Physical Review X, 2013, 3(1): 011013. doi:  10.1103/PhysRevX.3.011013
[46] Noor I, Jacobs E L. Adaptive compressive sensing algorithm for video acquisition using a single-pixel camera [J]. Journal of Electronic Imaging, 2013, 22(2): 021013. doi:  10.1117/1.JEI.22.2.021013
[47] Chen H, Weng Z, Liang Y, et al. High speed single-pixel imaging via time domain compressive sampling[C]//CLEO: Applications and Technology. Optical Society of America, 2014: JTh2A. 132.
[48] Torabzadeh M, Park I Y, Bartels R A, et al. Compressed single pixel imaging in the spatial frequency domain [J]. Journal of Biomedical Optics, 2017, 22(3): 030501. doi:  10.1117/1.JBO.22.3.030501
[49] Musarra G, Lyons A, Conca E, et al. Non-line-of-sight Three-dimensional imaging with a single-pixel camera [J]. Physical Review Applied, 2019, 12(1): 011002. doi:  10.1103/PhysRevApplied.12.011002
[50] Bacca J, Correa C V, Vargas E, et al. Compressive classification from single pixel measurements via deep learning[C]//2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2019: 1-6.
[51] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors [J]. Science, 2013, 340(6134): 844−847. doi:  10.1126/science.1234454
[52] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution [J]. Nature Communications, 2016, 7: 12010. doi:  10.1038/ncomms12010
[53] Zhang Z, Liu S, Peng J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements [J]. Optica, 2018, 5(3): 315. doi:  10.1364/OPTICA.5.000315
[54] Jiang S, Li X, Zhang Z, et al. Scan efficiency of structured illumination in iterative single pixel imaging [J]. Optics Express, 2019, 27(16): 22499−22507. doi:  10.1364/OE.27.022499
[55] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892−16901. doi:  10.1364/OE.20.016892
[56] Sun B, Matt B, Richard V, et al. "Differential computational ghost imaging." Computational Optical Sensing and Imaging [J]. Optical Society of America, 2013: CTu1C.4.
[57] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging [J]. Scientific Reports, 2013, 3: 1545. doi:  10.1038/srep01545
[58] Shimobaba T, Endo Y, Nishitsuji T, et al. Computational ghost imaging using deep learning [J]. Optics Communications, 2018, 413: 147−151. doi:  10.1016/j.optcom.2017.12.041
[59] Wang Z, Zhu J. Single-pixel compressive imaging based on motion compensation [J]. IET Image Processing, 2018, 12(12): 2283−2291. doi:  10.1049/iet-ipr.2018.5741
[60] Satat G, Tancik M, Raskar R. Lensless imaging with compressive ultrafast sensing [J]. IEEE Transactions on Computational Imaging, 2017, 3(3): 398−407. doi:  10.1109/TCI.2017.2684624
[61] Ring E F J, Ammer K. Infrared thermal imaging in medicine [J]. Physiological Measurement, 2012, 33(3): R33. doi:  10.1088/0967-3334/33/3/R33
[62] Gregg V, Green R O, Chrien T G, et al. The airborne visible/infrared imaging spectrometer (AVIRIS) [J]. Remote Sensing of Environment, 1993, 44(2-3): 127−143. doi:  10.1016/0034-4257(93)90012-M
[63] Gerald C H. Testing and Evaluation of Infrared Imaging Systems[M]. New York: JCD Pub., 1998.
[64] E-Neil L, Treado P J, Reeder R C, et al. Fourier transform spectroscopic imaging using an infrared focal-plane array detector [J]. Analytical Chemistry, 1995, 67(19): 3377−3381. doi:  10.1021/ac00115a003
[65] Wood R A, Han C J, Kruse P W. Integrated uncooled infrared detector imaging arrays[C]//IEEE, 1992: 132-135.
[66] Favro L D, Han X, Ouyang Z, et al. Infrared imaging of defects heated by a sonic pulse [J]. Review of Scientific Instruments, 2000, 71(6): 2418−2421. doi:  10.1063/1.1150630
[67] Bryan F J, Plassmann P. Digital infrared thermal imaging of human skin [J]. IEEE Engineering In Medicine and Biology Magazine, 2002, 21(6): 41−48. doi:  10.1109/MEMB.2002.1175137
[68] Nasse M J, Walsh M J, Mattson E C, et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams [J]. Nature Methods, 2011, 8(5): 413. doi:  10.1038/nmeth.1585
[69] Gibson G M, Sun B, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera [J]. Optics Express, 2017, 25(4): 2998−3005. doi:  10.1364/OE.25.002998
[70] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator [J]. Optics Express, 2013, 21(10): 12507−12518. doi:  10.1364/OE.21.012507
[71] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators [J]. Nature Photonics, 2014, 8(8): 605. doi:  10.1038/nphoton.2014.139
[72] She R, Liu W, Lu Y, et al. Fourier single-pixel imaging in the terahertz regime [J]. Applied Physics Letters, 2019, 115(2): 021101.
[73] Takashi Y, Kawada Y, Toyoda H, et al. Terahertz movies of internal transmission images [J]. Optics Express, 2007, 15(23): 15583−15588. doi:  10.1364/OE.15.015583
[74] Zhang Y, Zhang J, Jiang C. Algorithm of scanning terahertz imaging on computer [J]. Computer Engineering and Applications, 2008, 44(11): 234−236.
[75] Yi M, Kim H, Jin K H, et al. Terahertz substance imaging by waveform shaping [J]. Optics Express, 2012, 20(18): 20783−20789. doi:  10.1364/OE.20.020783
[76] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector [J]. Science Advances, 2016, 2(6): e1600190. doi:  10.1126/sciadv.1600190
[77] Joel G, Krishnamurthy K, Brady D. Compressive single-pixel snapshot x-ray diffraction imaging [J]. Optics Letters, 2014, 39(1): 111−114. doi:  10.1364/OL.39.000111
[78] Chen S. X-ray 'ghost images' could cut radiation doses Technique points to safer medical imaging done with cheap, single-pixel cameras [J]. Science, 2018, 359(6383): 1452. doi:  10.1126/science.359.6383.1452
[79] Thomas A S, Shih Y, Wang Z, et al. From optical to X-ray ghost imaging [J]. Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 2019: 935173−177.
[80] Margie P O, Paganin D M, Yin C, et al. Phase-sensitive x-ray ghost imaging [arXiv] [J]. arXiv, 2019: 6.
[81] Alan B. Stereoscopic images in confocal (tandem scanning) microscopy [J]. Science, 1985, 230(4731): 1270−1272. doi:  10.1126/science.4071051
[82] Robert J W. Photometric method for determining surface orientation from multiple images [J]. Optical Engineering, 1980, 19(1): 191139.
[83] Ronen B, Jacobs D, Kemelmacher I. Photometric stereo with general, unknown lighting [J]. International Journal of Computer Vision, 2007, 72(3): 239−257. doi:  10.1007/s11263-006-8815-7
[84] Kristin J D, Van G B, Nayar S K, et al. Reflectance and texture of real-world surfaces [J]. ACM Transactions on Graphics (TOG), 1999, 18(1): 1−34. doi:  10.1145/300776.300778
[85] Berthod K P H. Height and gradient from shading [J]. International Journal of Computer Vision, 1990, 5(1): 37−75. doi:  10.1007/BF00056771
[86] Zhang Y, Edgar M P, Sun B, et al. 3D single-pixel video [J]. Journal of Optics, 2016, 18(3): 35203. doi:  10.1088/2040-8978/18/3/035203
[87] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition [J]. Nature Communications, 2015, 6(1): 6225.
[88] Mitsuo T, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Applied Optics, 1983, 22(24): 3977. doi:  10.1364/AO.22.003977
[89] Max B, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. New York: Elsevier, 2013.
[90] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels [J]. Optics Letters, 2016, 41(11): 2497−2500. doi:  10.1364/OL.41.002497