[1] 唐新明, 李国元. 激光测高卫星的发展与展望[J]. 国际太空, 2017(11): 13-18. doi:  10.3969/j.issn.1009-2366.2017.11.004

Tang X M, Li G Y. Development and prospect of laser altimetry satellite [J]. Space International, 2017(11): 13-18. (in Chinese) doi:  10.3969/j.issn.1009-2366.2017.11.004
[2] Seidleck M. The ice, cloud, and land elevation satellite-2—Overview, science, and applications[C]//2018 IEEE Aerospace Conference. IEEE, 2018: 1-8.
[3] 唐新明, 李国元. 陆海激光卫星高程测量的思考[J]. 上海航天, 2019, 36(03): 15-19.

Tang X M, Li G Y. Thoughts about land and sea satellite laser altimetry [J]. Aerospace Shanghai, 2019, 36(3): 15-19. (in Chinese)
[4] Mcgill M, Markus T, Scott V S, et al. The Multiple Altimeter Beam Experimental Lidar (MABEL): An airborne simulator for theICESat-2 mission [J]. Journal of Atmospheric & Oceanic Technology, 2013, 30(2): 345-352. doi:  10.1175/JTECH-D-12-00076.1
[5] Magruder L A, Wharton M E, Stout K D, et al. Noise filtering techniques for photon-counting LADAR data[C]//Proceedings of SPIE, 2012, 8379: 83790Q.
[6] Neumann T A, Brenner A, Hancock D, et al. ATLAS/ICESat-2 L2A global geolocated photon data, version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA[DB/OL]. (2020-11-11)[2021−12−06]. https://doi.org/10.5067/ATLAS/ATL03.003.
[7] Gwenzi D, Lefsky M A, Suchdeo V P, et al. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 118: 68-82. doi:  10.1016/j.isprsjprs.2016.04.009
[8] Neuenschwander A L, Pitts K L, Jelley B P, et al. ATLAS/ICESat-2 L3 A land and vegetation height, version 3, NASA National Snow and Ice, Boulder, CO, USA[DB/OL]. (2021-11-11)[2021−12−06]. https://nsidc.org/data/ATL08/versions/3.
[9] 许艺腾, 李国元, 邱春霞, 等. 基于地形相关和最小二乘曲线拟合的单光子激光数据处理技术[J]. 红外与激光工程, 2019, v. 48;No. 302(12): 148-157. doi:  10.3788/IRLA201948.1205004

Xu Y T, Li G Y, Qiu C X, et al. Single photon laser data processing technology based on Terrain Correlation and least square curve fitting [J]. Infrared and Laser Engineering, 2019, 48(12): 1205004. (in Chinese) doi:  10.3788/IRLA201948.1205004
[10] 曹彬才, 方勇, 江振治, 等. 基于空间密度自适应的单光子激光点云去噪算法[J]. 测绘科学与工程, 2019, 039(004): P. 13-17.

Cao B C, Fang Y, Jiang Z Z, et al. Single photon laser point cloud denoising algorithm based on adaptive spatial density [J]. Geomatics Sciecce and Engineering, 2019, 39(4): 13-17. (in Chinese)
[11] Zhang J, Kerekes J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(4): 726-730. doi:  10.1109/LGRS.2014.2360367
[12] 谢锋, 杨贵, 舒嵘, 等. 方向自适应的光子计数激光雷达滤波方法[J]. 红外与毫米波学报, 2017(1). doi:  10.11972/j.issn.1001-9014.2017.01.019

Xie F, Yang G, Shu R, et al. An adaptive directional filter for photon counting Lidar point cloud data [J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 107-113. (in Chinese) doi:  10.11972/j.issn.1001-9014.2017.01.019
[13] Xia S B, Wang C, Xi X H, et al. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2 [J]. Journal of Remote Sensing, 2014, 18(6): 1199-1207. doi:  10.11834/jrs.20144029
[14] Zhang J S, Kerekes J P. First-principle simulation of spaceborne micropulse photon-counting lidar performance on complex surfaces [J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(10): 6488-6496. doi:  10.1109/TGRS.2013.2296716
[15] Kwok R, Markus T, Morison J, et al. Profiling sea ice with a multiple altimeter beam experimental lidar (MABEL) [J]. Journal of Atmospheric & Oceanic Technology, 2014, 31(5): 1151-1168. doi:  10.1175/JTECH-D-13-00120.1
[16] Nie S, Wang C, Xi X, et al. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data [J]. Optics Express, 2018, 26(10): A520-A540.
[17] 王玥, 李松, 田昕, 等. 方向自适应的星载光子计数激光测高植被冠层高度估算[J]. 红外与毫米波学报, 2020, 39(03): 363-371. doi:  10.11972/j.issn.1001-9014.2020.03.015

Wang Y, Li S, Tian X, et al. An adaptive directional model for estimating vegetation canopy height using space-borne photon counting laser altimetry data [J]. Journal of Infrared and Millimeter Waves, 2020, 39(3): 363-371. (in Chinese) doi:  10.11972/j.issn.1001-9014.2020.03.015
[18] Hong Z G, Cong N, Yan L, et al. Three dimensional surface monitoring technology of ice and snow resources in Qinghai Tibet Plateau—a case study of Geladandong [J]. Science of Surveying and Mapping, 2012, 37(2): 63-65. doi:  10.16251/j.cnki.1009-2307.2012.02.005
[19] 张林源. 长江上游沱沱河源头地区的冰川及其演变[J]. 冰川冻土, 1981, 3(1): 1-9.

Zhang L Y. Glaciers and their evolution in the source area of Tuotuo River in the upper reaches of the Yangtze River [J]. Journal of Glaciology and Geocryology, 1981, 3(1): 1-9. (in Chinese)
[20] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 Mission [J]. Remote Sensing of Environment, 2019, 221: 247-259. doi:  10.1016/j.rse.2018.11.005