[1] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics , 2009, 3: 696–705.
[2] Eisaman M D, Fan J, Migdall A, et al. Invited review article: Single-photon sources and detectors [J]. Review of Scientific Instruments, 2011, 82(7): 071101. doi:  10.1063/1.3610677
[3] Kameyama S, Yanagisawa T, Ando T, et al. Development of wind sensing coherent doppler lidar at mitsubishi electric corporation from late 1990s to 2013 [C]//Abstracts Int Coherent Laser Radar Conf, 2013.
[4] Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication [J]. Light: Science & Applications, 2015, 4(5): e286.
[5] Jiang Lianjun, Fang Yuqiang, Yu Chao, et al. Miniaturized free-running InGaAs/InP single-photon detector (invited) [J]. Infrared and Laser Engineering , 2023, 52(3): 20230017. (in Chinese).
[6] Zhang J, Eraerds P, Walenta N, et al. 2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution [C]//Advanced Photon Counting Techniques IV, SPIE, 2010, 7681: 239-246.
[7] Itzler M A, Jiang X, Entwistle M, et al. Advances in InGaAsP-based avalanche diode single photon detectors [J]. Journal of Modern Optics, 2011, 58(3-4): 174-200. doi:  10.1080/09500340.2010.547262
[8] Lunghi T, Barreiro C, Guinnard O, et al. Free-running single-photon detection based on a negative feedback InGaAs APD [J]. Journal of Modern Optics, 2012, 59(17): 1481-1488. doi:  10.1080/09500340.2012.690050
[9] Yan Z, Hamel D R, Heinrichs A K, et al. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode [J]. Review of Scientific Instruments, 2012, 83(7): 073105. doi:  10.1063/1.4732813
[10] Yu C, Shangguan M, Xia H, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications [J]. Optics Express, 2017, 25(13): 14611-14620. doi:  10.1364/OE.25.014611
[11] Yu C, Qiu J, Xia H, et al. Compact and lightweight 1.5 μm lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector [J]. Review of Scientific Instruments, 2018, 89(10): 6-14.
[12] Zhang J, Thew R, Gautier J D, et al. Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1 550 nm with an active quenching ASIC [J]. IEEE J Quantum Electron, 2009, 45: 792-799. doi:  10.1109/JQE.2009.2013210
[13] Shi Yanli, Li Yunxue, Bai Rong, et al. Advancement of shortwave infrared single-photon detectors(invited) [J]. Infrared and Laser Engineering , 2023, 52(3): 20220908. (in Chinese) doi:  10.3788/IRLA20220908
[14] Jiang X, Itzler M A, Ben-Michael R, et al. Afterpulsing effects in free-running InGaAsP single-photon avalanche diodes [J]. IEEE Journal of Quantum Electronics, 2007, 44(1): 3-11.
[15] Cova S, Lacaita A, Ripamonti G. Trapping phenomena in avalanche photodiodes on nanosecond scale [J]. IEEE Electron Device Letters, 1991, 12(12): 685-687. doi:  10.1109/55.116955
[16] Rarity J G, Wall T E, Ridley K D, et al. Single-photon counting for the 1 300–1 600 nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes [J]. Applied Optics, 2000, 39(36): 6746-6753. doi:  10.1364/AO.39.006746
[17] Guo Zhihong, Xiao Liantuan. Photon statistical analyses for afterpulse probability [J]. Shanxi Electronic Technology, 2007(3): 3-4. (in Chinese)
[18] Comandar L C, Fröhlich B, Dynes J F, et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1 550 nm [J]. Journal of Applied Physics, 2015, 117(8): 083109. doi:  10.1063/1.4913527
[19] Jiang W H, Liu J H, Liu Y, et al. 1.25 GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit [J]. Optics Letters, 2017, 42(24): 5090-5093. doi:  10.1364/OL.42.005090
[20] Fang Y Q, Chen W, Ao T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1 550 nm [J]. Review of Scientific Instruments, 2020, 91(8): 083102. doi:  10.1063/5.0014123