[1] Kaushal H, Kaddoum G. Underwater optical wireless communication [J]. IEEE Access, 2016, 4: 1518-1547. doi:  10.1109/ACCESS.2016.2552538
[2] Zeng Z, Shu F, Zhang H, et al. A survey of underwater optical wireless communications [J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 204-238.
[3] Liu L, Zhou S, Cui J H. Prospects and problems of wireless communication for underwater sensor networks [J]. Wireless Communications & Mobile Computing, 2010, 8(8): 977-994.
[4] Sui Meihong, Yu Xinsheng, Liu Xifeng, et al. Research on the characteristics of underwater optical wireless communication channels in seawater [J]. Marine Science, 2009, 33(6): 80-85. (in Chinese)
[5] Abbas A, Ali M. On the performance of blue–green waves propagation through underwater optical wireless communication system [J]. Photonic Network Communications, 2018, 36(3): 309-315. doi:  10.1007/s11107-018-0781-9
[6] Ata Y N, Baykal Y. Scintillations of optical plane and spherical waves in underwater turbulence [J]. A Optics Image Science & Vision, 2014, 31(7): 1552-1556.
[7] Baykal, Yahya. Scintillation index in strong oceanic turbulence [J]. Optics Communications, 2016, 375: 15-18. doi:  10.1016/j.optcom.2016.05.002
[8] Gökce M C, Yahya Baykal b. Aperture averaging in strong oceanic turbulence [J]. Optics Communications, 2018, 413: 196-199.
[9] Fu Y, Huang C, Du Y. Effect of aperture averaging on mean bit error rate for UWOC system over moderate to strong oceanic turbulence [J]. Optics Communications, 2019, 451: 6-12. doi:  10.1016/j.optcom.2019.06.030
[10] Kaushik R, Khandelwal V, Jain R C. Effect of aperture averaging and spatial diversity on capacity of optical wireless communication systems over lognormal channels [J]. Radioelectronics and Communications Systems, 2016, 59(12): 527-535. doi:  10.3103/S0735272716120013
[11] Huang A, Tao L, Wang C, et al. Error performance of underwater wireless optical communications with spatial diversity under turbulence channels [J]. Applied Optics, 2018, 57(26): 7600-7608. doi:  10.1364/AO.57.007600
[12] Ramavath P N, Kumar A, Godkhindi S S, et al. Experimental studies on the performance of underwater optical communication link with channel coding and interleaving [J]. Csi Transactions on Ict, 2018, 6(1): 65-70. doi:  10.1007/s40012-017-0179-3
[13] Mattoussi F, Khalighi M A, Bourennane S. Improving the performance of underwater wireless optical communication links by channel coding [J]. Applied Optics, 2018, 57(9): 2115-2120. doi:  10.1364/AO.57.002115
[14] Ramavath P N, Acharya Udupi S, Krishnan P. High-speed and reliable underwater wireless optical communication system using multiple-input multiple-output and channel coding techniques for IoUT applications [J]. Optics Communications, 2020, 461: 125229. doi:  10.1016/j.optcom.2019.125229
[15] Srivastava V, Mandloi A, Soni G G. Outage probability and average BER estimation of FSO system employing wavelength diversity [J]. Optical and Quantum Electronics, 2019, 51(7): 229. doi:  10.1007/s11082-019-1943-4
[16] Jiao W, Liu H, Yin J, et al. Performance of a QAM/FSO communication system employing spatial diversity in weak and saturation turbulence channels [J]. Journal of Modern Optics, 2019, 66(9): 965-975. doi:  10.1080/09500340.2019.1596321
[17] Prabu K, Cheepalli S, Kumar D S. Analysis of PolSK based FSO system using wavelength and time diversity over strong atmospheric turbulence with pointing errors [J]. Optics Communications, 2014, 324: 318-323. doi:  10.1016/j.optcom.2014.03.058
[18] Shah D, Kothari D, Ghosh A. Bit error rate analysis of the K channel using wavelength diversity [J]. Optical Engineering, 2017, 56(5): 056106. doi:  10.1117/1.OE.56.5.056106
[19] Sharma K, Grewal S K. Performance assessment of hybrid PPM–BPSK–SIM based FSO communication system using time and wavelength diversity under variant atmospheric turbulence [J]. Optical and Quantum Electronics, 2020, 52(10): 430. doi:  10.1007/s11082-020-02547-7
[20] Peppas K P, Boucouvalas A C, Ghassemloy Z. Performance of underwater optical wireless communication with multi-pulse pulse-position modulation receivers and spatial diversity [J]. IET Optoelectronics, 2017, 11(5): 180-185. doi:  10.1049/iet-opt.2016.0130
[21] Pearson B, Fox-Kemper B. Log-normal turbulence dissipation in global ocean models [J]. Physical Review Letters, 2018, 120(9): 094501. doi:  10.1103/PhysRevLett.120.094501
[22] Jiang Hongyan, Qiu Hongbing, He Ning, et al. Optical OFDM spatial diversity system in lognormal fading UVLC channels [J]. Infrared and Laser Engineering, 2020, 49(2): 0203008. (in Chinese)
[23] Fu Yuqing, Duan Qi, Zhou Lin. Performance of underwater wireless optical communication system in Gamma Gamma strong oceanic turbulence with pointing error [J]. Infrared and Laser Engineering, 2020, 49(2): 0203013. (in Chinese) doi:  10.3788/IRLA202049.0203013
[24] He Fengtao, Du Ying, Zhang Jianlei, et al. Bit error rate of pulse position modulation wireless optical communication in gamma-gamma oceanic anisotropic turbulence [J]. Acta Physica Sinica, 2019, 68(16): 164206. (in Chinese) doi:  10.7498/aps.68.20190452
[25] Farid A A, Hranilovic S. Outage capacity optimization for free-space optical links with pointing errors [J]. Journal of Lightwave Technology, 2007, 25(7): 1702-1710. doi:  10.1109/JLT.2007.899174
[26] Zou Z, Wang P, Chen W, et al. Average capacity of a UWOC system with partially coherent Gaussian beams propagating in weak oceanic turbulence [J]. Journal of the Optical Society of America A, 2019, 36(9): 1463-1474. doi:  10.1364/JOSAA.36.001463
[27] Fu Y, Du Y. Performance of heterodyne differential phase-shift-keying underwater wireless optical communication systems in gamma-gamma-distributed turbulence [J]. Applied Optics, 2018, 57(9): 2057-2063. doi:  10.1364/AO.57.002057
[28] Adamchik V, Marichev O. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system[C]//ISSAC '90 Proceedings of International Symposium on Symbolic and Algebraic Computation, 1990: 212-224.
[29] Andrews L C, Phillips R L, Hopen C Y. Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum [J]. Waves in Random Media, 2000, 10(1): 53-70. doi:  10.1088/0959-7174/10/1/305
[30] Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index [J]. International Journal of Fluid Mechanics Research, 2000, 27(1): 82-98. doi:  10.1615/InterJFluidMechRes.v27.i1.70
[31] Wang Y, Zhu L, Feng W. Performance study of wavelength diversity serial relay OFDM FSO system over exponentiated weibull channels [J]. Optics Communications, 2021, 478: 126470. doi:  10.1016/j.optcom.2020.126470
[32] Sanjay Kumar Sahu, Palanisamy Shanmugam. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system [J]. Optics Communications, 2018, 408: 3-14. doi:  10.1016/j.optcom.2017.06.030
[33] Wang Fei, Yang Yi, Duan Zuoliang, et al. Characteristic analysis of underwater laser transmission channel based on visible light [J]. Optical Communication Technology, 2016, 40(3): 26-28. (in Chinese)
[34] Li Chen, Wang Fei. Analysis of the influence of seawater quality on laser receiving power [J]. Application of Optoelectronic Technology, 2017, 32(1): 44-49. (in Chinese)