[1] DLR. Closed Space Robotics Missions (in alphabetical order)ESS [EB/OL]. [2020-05-03].[2010-04-13]. http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3827/5969_read-8750/.html.
[2] DARPA Tactical Technology Office. Front-end robotic enabling near-term demonstrations(FREND)Project Page[EB/OL]. [2020-05-03][2010-10-11].http://www.darpa.mil/tto/programs/frend.html.
[3] 徐文福, 刘宇, 梁斌, 等. 非合作航天器的相对位姿测量[J]. 光学 精密工程, 2009, 17(7): 1570−1581. doi:  10.3321/j.issn:1004-924X.2009.07.012

Xu Wenfu, Liu Yu, Liang Bin, et al. Measurement of relative poses bet ween t wo non2cooperative spacecrafts [J]. Optics and Precision Engineering, 2009, 17(7): 1570−1581. (in Chinese) doi:  10.3321/j.issn:1004-924X.2009.07.012
[4] 王志超, 王滨, 李志奇, 等. 基于特征融合的非合作航天器位姿测量方法[J]. 高技术通讯, 2013, 23(11): 1178−1184.

Wang Zhichao, Wang Bin, Li Zhiqi, et al. Relative pose measurement of a non-cooperative spacecraft based on feature information fusion [J]. Chinese High Technology Letters, 2013, 23(11): 1178−1184. (in Chinese)
[5] 张世杰, 曹喜滨, 陈闽. 非合作航天器间相对位姿的单目视觉确定算法[J]. 南京理工大学学报, 2013, 23(11): 1178−1184.

Zhang Shijie, Cao Xibin, Chen Min. Monocular vision-based relative pose parameters determination for non-cooperative spacecrafts [J]. Journal of Nanjing University of Science and Technology, 2013, 23(11): 1178−1184. (in Chinese)
[6] 解永春, 王勇, 陈奥, 等. 基于学习的空间机器人在轨服务操作技术[J]. 空间控制技术与应用, 2019, 45(4): 25−37. doi:  10.3969/j.issn.1674-1579.2019.04.004

Xie Yongchun, Wang Yong, Chen Ao, et al. Leaning based on-orbit servicing manipulation technology of space robot [J]. Aerospace Control and Application, 2019, 45(4): 25−37. (in Chinese) doi:  10.3969/j.issn.1674-1579.2019.04.004
[7] 杨名. 基于深度学习的空间非合作目标多模智能重建算法研究[D]. 哈尔滨: 哈尔滨工业大学 , 2018.

Yang Ming. Multi-pattern 3d intelligent reconstruction method for non-cooperative space targets based on deep learning[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
[8] 刘帅. 空间机器人抓捕非合作目标的智能控制与识别[D]. 大连: 大连理工大学, 2019.

Liu Shuai. Intelligent control and recognition of space robot capturing non cooperative targets[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
[9] Sharma S, D’Amico S. Pose estimation for non-cooperative rendezvous using neural networks[C]// AAS/AIAA Astrodynamics Specialist Conference, 2019.
[10] Pedro F, Yang G. Deep learning for space pose estimation from photorealistic rendering[C]// AAS/AIAA Astrodynamics Specialist Conference, 2019.
[11] 李想. 基于深度学习的空间非合作目标姿态估计算法设计[D]. 哈尔滨: 哈尔滨工业大学, 2018.

Li Xiang. Design of attitude estimation algorithm for space non- cooperative targets based on deep learning[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
[12] Lin T Y, Dollar P, Girshick R, et a1. Feature pyramid networks for object detection[J].arXiv: 1612.03 144v2, 2016.
[13] Li Z X, Zhou F Q. FSSD: Feature fusion single shot multibox detector[J]. arXiv: 1712.00960v3, 2018.
[14] 谭红臣, 李淑华, 刘彬, 等. 特征增强的SSD算法及其在目标检测中的应用[J]. 计算机辅助设计与图形学学报, 2019, 31(4): 63−69.

Tan Hongchen, Li Shuhua, Li bin, et al. Feature enhancement SSD for object detection [J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4): 63−69. (in Chinese)
[15] D’Amico S, Bodin P, Delpech M, et al. PRISMA. Chap 21[M]// Distributed Space Missions for Earth System Monitoring: Space Technology Library, Volume 31, Part 4. US: Springer, 2013: 599-637.
[16] D’Amico S, Benn M, Jørgensen J L. Pose estimation of an uncooperative spacecraft from actual space imagery [J]. International Journal of Space Science and Engineering, 2014, 2(2): 171−189. doi:  10.1504/IJSPACESE.2014.060600
[17] Beierle C , D'Amico S. Variable-magnification optical stimulator for training and validation of spaceborne vision-based navigation [J]. Journal of Spacecraft and Rockets, 2019, 56(4): 1060−1072. doi:  10.2514/1.A34337
[18] Sharma S, Beierle C, D'Amico S. Pose estimation for non-cooperative spacecraft rendezvous using convolutional neural networks[C]// The 21th IEEE Aerospace Conference, 2018.