[1] 孙明国, 高鹏骐, 李振伟, 等. 天宫一号飞行器失效后激光测距实验分析 [J]. 科学通报, 2017, 62: 2796–2803. doi:  10.1360/N972016-01302

Sun Mingguo, Guo Pengqi, Li Zhenwei, et al. Analysis on the experiment of satellite laser ranging of defunct Tiangong-1 spacecraft [J]. Chinese Science Bulletin, 2017, 62(24): 2796-2803. (in Chinese) doi:  10.1360/N972016-01302
[2] Scharring S, Eisert L, Lorbeer R-A, et al. Momentum predictability and heat accumulation in laser-based space debris removal [J]. Optical Engineering, 2018, 58(1): 011004. doi:  10.1117/1.OE.61.3.039801
[3] Weichman K, Robinson A P L, Murakami M, et al. Strong surface magnetic field generation in relativistic short pulse laser–plasma interaction with an appliedseed magnetic field [J]. New Journal of Physics, 2020, 22: 113009. doi:  10.1088/1367-2630/abc496
[4] Frost M, Curry C B, Glenzer S H. Laser cutting apparatus for high energy density and diamond anvil cell science [J]. Journal of Instrumentation, 2020, 15 (5): 05004. doi:  10.1088/1748-0221/15/05/P05004
[5] Savelyev M S, Agafonova N O, Vasilevsky P N, et al. Effects of pulsed and continuous-wave laser radiation on the fabrication of tissue-engineered composite structures [J]. Optical Engineering, 2020, 59(6): 061623. doi:  10.1117/1.OE.59.6.061623
[6] Shin S, Hur J G, Park J K, et al. Thermal damage free material processing using femtosecond laser pulses for fabricating fine metal masks: Influences of laser fluence and pulse repetition rate on processing quality [J]. Optics and Laser Technology, 2021, 134: 106618. doi:  10.1016/j.optlastec.2020.106618
[7] Kluge T, Rödel M, Metzkes-Ng J, et al. Observation of ultrafast solid-density plasma dynamics using femtosecond X-ray pulses from a free-electron laser [J]. Physical Review X, 2018, 8(3): 031068. doi:  10.1184/HPLPB201729.3170138
[8] Kumar S, Park J, Nam S H, et al. Laser-induced plasma generated by a 532 nm pulsed laser in bulk water: unexpected line-intensity variation with water temperature and the possible underlying physics [J]. Plasma Science and Technology, 2020, 22(7): 074009. doi:  10.1088/2058-6272/ab812e
[9] Wang Hongli. Research on pulsed compression technologies of kHz sub-nanosecond laser based on stimulated Brillouin scattering[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
[10] 王红丽, 李森森, 王雨雷等. 液体SBS在高功率激光中的应用(特邀)[J]. 光电技术应用, 2022, 37(02): 1-13+62. doi:  10.3969/j.issn.1673-1255.2022.02.002

Wang Hongli, Li Sensen, Wang Yulei, et al. Applications of liquid SBS in high-power lasers (Invited) [J]. Electro-Optic Technology Application, 2022, 37(2): 1-13+62. (in Chinese) doi:  10.3969/j.issn.1673-1255.2022.02.002
[11] 白振旭, 陈晖, 蔡云鹏, 等. 金刚石拉曼振荡器实现级联布里渊激光输出[J]. 红外与激光工程, 2022, 51(11): 20220660. doi:  10.3788/IRLA20220660
[12] 王天齐, 康治军, 孟冬冬, 等. 受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展[J]. 红外与激光工程, 2021, 50(05): 51-62. doi: 10.3788/IRLA20211024

Wang Tianqi, Kang Zhidong, Meng Dongdong, et al. Application progress of the stimulated Brillouin scattering phase conjugate mirror in high power nanosecond lasers [J]. Infrared and Laser Engineering, 2021, 50(5): 20210124. (in Chinese) doi:  10.3788/IRLA20210124
[13] Bai Z X, Yuan H, Liu Z H, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review [J]. Optical Materials, 2018, 75: 626-645. doi:  10.1016/j.optmat.2017.10.035
[14] 白振旭, 陈晖, 李宇琪等. 基于金刚石拉曼转换的光束亮度增强研究进展[J]. 红外与激光工程, 2021, 50(01): 227-237. doi:  10.3788/IRLA20200098

Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion [J]. Infrared and Laser Engineering, 2021, 50(1): 20200098. (in Chinese) doi:  10.3788/IRLA20200098
[15] Wang Hongli, Seongwoo Cha, Kong Hongjin, et al. Thermal suppression of high-repetition rate SBS pulse compression in liquid media [J]. Optics Express, 2022, 30(21): 38995-39013. doi:  10.1364/OE.469481
[16] Yoshida H, Kmetik V, Fujita H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror [J]. Applied Optics, 1997, 36(16): 3744. doi:  10.1364/AO.36.003739
[17] Hasi Wuliji, Lv Zhiwei, He Weiming, et al. Experimental investigation on the improvement of SBS characteristics by purifying the mediums [J]. Chinese Optics Letters, 2004, 2(12): 718-721.
[18] Kang Zhijun, Fan Zhongwei, Huang Yutao, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM [J]. Optics Express, 2018, 26(6): 6560-6571. doi:  10.1364/OE.26.006560
[19] Wang Y L, Lv Z W, Li Y, et al. Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror [J]. Applied Physics B-Lasers and Optics, 2010, 98(2): 391-395. doi:  10.1007/s00340-009-3805-4
[20] Kiriyama H, Yamakawa K, Nagai T, et al. 360-W average power operation with a single-stage diode-pumped Nd: YAG amplifier at a 1-kHz repetition rate [J]. Optics Letters, 2003, 28(18): 1671-1673. doi:  10.1364/OL.28.001671
[21] Yoshida H, Ohkubo A, Fujita H, et al. Thermally induced effects of stimulated Brillouin scattering via phase-conjuga-tion mirror for repetitive laser pulse [J]. Laser Original, 2001, 29(2): 109-114. doi:  10.2184/lsj.29.109
[22] Wang Hongli, Seongwoo Cha, Kong Hongjin, et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation [J]. Optics Express, 2019, 27(7): 9895-9905. doi:  10.1364/OE.27.009895