[1] Pan Sunqiang, Hu Pengbin, Chen Zhemin, et al. Measurement of vapor hydrogen peroxide based on mid infrared absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1102-1106. (in Chinese)
[2] Hou Yue, Huang Kejin, Yu Guanyi, et al. Development on high precision CO2 isotope measurement system based on infrared TDLAS technology [J]. Infrared and Laser Engineering, 2021, 50(4): 20200083. (in Chinese) doi:  20200083
[3] Xue Bin, Zhao Tuo, Wu Hanzhong, et al. Speed measurement using femtosecond optical frequency comb based on phase signal processing [J]. Infrared and Laser Engineering, 2018, 47(2): 0206002. (in Chinese) doi:  0206002
[4] Mirov S B, Fedorov V V, Martyshkin D, et al. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1601719. doi:  10.1109/JSTQE.2014.2346512
[5] Sorokina I T, Sorokin E. Femtosecond Cr2+-based lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1601519. doi:  10.1109/JSTQE.2014.2341589
[6] Wang Yunpeng, Wang Fei, Zhang Dongxu. Optical properties of Cr2+: ZnSe single crystal grown under high temperature and high pressure. [J]. Chinese Optics, 2015, 8(4): 615-620. (in Chinese) doi:  10.3788/co.20150804.0615
[7] Liu Changyou, Jie Wanqi, Zhang Binbin, et al. Growth and spectral properties of Cr2+: ZnSe crystals for mid-infrared lasers [J]. Journal of Synthetic Crystals, 2011, 40(6): 1382-1386. (in Chinese) doi:  10.3969/j.issn.1000-985X.2011.06.005
[8] Zhang Yuqin, Feng Guoying, Gao Xiang. Comparative study on spectral charateristics of Cr2+: ZnS and Fe2+: ZnS [J]. High Power Laser and Particle Beams, 2014, 26(9): 82-85. (in Chinese)
[9] Baumgartl M, Lecaplain C, Hideur A, et al. 66 W average power from a microjoule-class sub-100 fs fiber oscillator [J]. Optics Letters, 2012, 37(10): 1640-1642. doi:  10.1364/OL.37.001640
[10] Vodopyanov K L, Sorokin E, Sorokina I, et al. 4.4-5.4 µm frequency comb from a subharmonic OP-GaAs OPO pumped by a femtosecond Cr: ZnSe laser[C]//Advances in Optical Materials, Optical Society of America, 2011: AME2.
[11] Gordon A, Kartner F X. Scaling of keV HHG photon yield with drive wavelength [J]. Optics Express, 2005, 13(8): 2941-2947. doi:  10.1364/OPEX.13.002941
[12] Zhang J W, Mak K F, Nagl N, et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1 [J]. Light-Science & Applications, 2018, 7: 6.
[13] Wang Q, Zhang J, Kessel A, et al. Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes [J]. Optics Letters, 2019, 44(10): 2566-2569. doi:  10.1364/OL.44.002566
[14] Sorokina I T, Sorokin E, Carrig T J. Femtosecond pulse generation from a SESAM mode-locked Cr: ZnSe laser[C]//Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Optical Society of America, 2006: CMQ2.
[15] Cizmeciyan M N, Cankaya H, Kurt A, et al. Kerr-lens mode-locked femtosecond Cr2+: ZnSe laser at 2420 nm [J]. Optics Letters, 2009, 34(20): 3056-3058. doi:  10.1364/OL.34.003056
[16] Zheng Li, Wang Huibo, Tian Wenlong, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201069. (in Chinese) doi:  20201069
[17] Sorokin E, Tolstik N, Schaffers K I, et al. Femtosecond SESAM-modelocked Cr:ZnS laser [J]. Optics Express, 2012, 20(27): 28947-28952. doi:  10.1364/OE.20.028947
[18] Slobodchikov E, Moulton P F. 1-GW-peak-power, Cr: ZnSe laser[C]//Laser Applications to Photonic Applications, Optical Society of America, 2011: PAPD10.
[19] Tolstik N, Sorokin E, Sorokina I T, et al. Watt-level Kerr-lens mode-locked Cr: ZnS laser at 2.4 μm[C]//2013 Conference on Lasers and Electro-Optics, Optical Society of America, 2013: CTh1H. 2.
[20] Moskalev I S, Fedorov V V, Mirov S B. Self-starting Kerr-mode-locked polycrystalline Cr2+: ZnSe laser[C]//2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Optical Society of America, 2008: CFI3.
[21] Ilday F O, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser [J]. Physical Review Letters, 2004, 92(21): 4.
[22] Renninger W H, Chong A, Wise F W. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 389-398. doi:  10.1109/JSTQE.2011.2157462
[23] Sorokina I T, Sorokin E, Carrig T J, et al. A SESAM passively mode-locked Cr: ZnS laser[C]//Advanced Solid-State Photonics, Optical Society of America, 2006: TuA4.
[24] Vasilyev S, Moskalev I, Mirov M, et al. Kerr-lens mode-locked middle IR polycrystalline Cr: ZnS laser with a repetition rate 1.2 GHz[C]//Lasers Congress 2016 (ASSL, LSC, LAC), Optical Society of America, 2016: AW1A. 2.
[25] Hu C, Zhu J, Wang Z, et al. Kerr-lens mode-locked polycrystalline Cr: ZnS femtosecond laser pumped by a monolithic Er: YAG laser [J]. Chinese Physics B, 2017, 26(1): 014206. doi:  10.1088/1674-1056/26/1/014206
[26] Nagl N, Grobmeyer S, Potzlberger M, et al. Directly diode-pumped few-optical-cycle Cr: ZnS laser at 800 mW of average power[C]//Conference on Lasers and Electro-Optics, Optical Society of America, 2020: SF3H.5.
[27] Vasilyev S, Moskalev I, Smolski V, et al. Kerr-lens mode-locked Cr: ZnS oscillator reaches the spectral span of an optical octave [J]. Optics Express, 2021, 29(2): 2458-2465. doi:  10.1364/OE.411984
[28] Barh A, Heidrich J, Alaydin B O, et al. Watt- level and sub-100-fs self-starting mode-locked 2.4 μm Cr: ZnS oscillator enabled by GaSb-SESAMs [J]. Optics Express, 2021, 29(4): 5934-5946. doi:  10.1364/OE.416894
[29] Magni V, Cerullo G, De Silvestri S. Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers [J]. Optics Communications, 1993, 101: 365-370. doi:  10.1016/0030-4018(93)90731-J
[30] Cerullo G, De Silvestri S, Magni V, et al. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers [J]. Optics Letters, 1994, 19(11): 807-809. doi:  10.1364/OL.19.000807