[1] Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar [J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)
[2] Zeng Haomin, Li Song, Zhang Zhiyu, et al. Risley-prism-based beam scanning system for mobile lidar [J]. Optics and Precision Engineering, 2019, 27(7): 1444-1450. (in Chinese) doi:  10.3788/OPE.20192707.1444
[3] Chen Y P, Zhai J P, Xu X T, et al. Mode-locked thulium-doped fiber laser based on 0.3 nm diameter single-walled carbon nanotubes at 1.95 μm [J]. Chinese Optics Letters, 2017, 15(4): 041403. doi:  10.3788/COL201715.041403
[4] Wang Caili, Xie Shiyong, Liu Hui, et al. Theoretical study 2 μm Tm:YAG laser with wavelength switchable accurately for lidar [J]. Infrared and Laser Engineering, 2018, 47(8): 0830003. (in Chinese) doi:  10.3788/IRLA201847.0830003
[5] Ling W J, Xia T, Dong Z, et al. Passively mode-locked Tm, Ho: LLF laser at 1895 nm [J]. Journal of Optics, 2019, 48(2): 209-213. doi:  10.1007/s12596-019-00528-y
[6] Wang Y C, Xie G Q, Xu X D, et al. SESAM mode-locked Tm:CALGO laser at 2 µm [J]. Optical Materials Express, 2015, 6(1): 131-136. doi:  https://doi.org/10.1364/OME.6.000131
[7] Tan W D, Su C Y, Knize R J, et al. Mode locking of ceramic Nd: yttrium aluminum garnet with graphene as a saturable absorber [J]. Applied Physics Letters, 2010, 96(3): 031106. doi:  https://doi.org/10.1063/1.3292018
[8] Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser [J]. Applied Physics Letters, 2010, 97(20): 203106. doi:  https://doi.org/10.1063/1.3517251
[9] Cizmeciyan M N, Kim J W, Bae S, et al. Graphene mode-locked femtosecond Cr: ZnSe laser at 2500 nm [J]. Optics Letters, 2013, 38(3): 341. doi:  10.1364/OL.38.000341
[10] Wei C, Jiang S, Xu S, et al. Graphene saturable absorber for diode pumped Yb: Sc2SiO5 mode-locked laser [J]. Optics & Laser Technology, 2015, 65: 1-4.
[11] Zhu H T, Zhao L, Jie L, et al. Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser [J]. Optical Engineering, 2015, 55(8): 081304. doi:  10.1117/1.OE.55.8.081304
[12] Zhu H T, Liu J, Jiang S Z, et al. Diode-pumped Yb, Y: CaF2 laser mode-locked by monolayer graphene [J]. Optics & Laser Technology, 2015, 75: 83-86.
[13] Xu Jinlong, Li Xianlei, Wu Yongzhong, et al. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser [J]. Optics letters, 2011, 36(10): 1948-1950. doi:  10.1364/OL.36.001948
[14] Zhao C, Huang Q Q, Mohammed A A, et al. Observation of chaotic polarization attractors from a graphene mode locked soliton fiber laser [J]. Chinese Optics Letters, 2019, 17(2): 60-64.
[15] Ma J, Xie G Q, Lv P, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength [J]. Optics Letters, 2012, 37(11): 2085-2087. doi:  10.1364/OL.37.002085
[16] Wang Y C, Chen W D, Mero M, et al. Sub-100 fs Tm: MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber [J]. Optics Letters, 2017, 42(16): 3076-3079. doi:  10.1364/OL.42.003076
[17] Cheng Chen, Wei Jiafeng, Liu Bowen, et al. Experiment of mode-locked laser using graphene oxide [J]. Physics Experimentation, 2014(1): 1-4. (in Chinese)
[18] Zhu H T, Cai W, Wei J F, et al. 763 fs Passively mode-locked Yb: Y2SiO5 laser with a graphene oxide absorber mirror [J]. Optics & Laser Technology, 2015, 68: 120-123.
[19] Zhang G, Wang Y G, Chen Z D, et al. Graphene oxide based reflective saturable absorber for Q-switched and mode-locked YVO4/ Nd: YVO4/ YVO4 laser [J]. Journal of Optics, 2018, 20(5): 055505.
[20] Ling Weijun, Xia Tao, Dong Zhong, et al. Passively Q-switched mode-locked low threshold Tm, Ho:LiLuF4 laser with a graphene Oxide saturable absorber [J]. Chinese Journal of Lasers, 2018, 45(3): 0301006. (in Chinese)
[21] Beil K, Fredrich-Thornton S T, Tellkamp F, et al. Thermal and laser properties of Yb: LuAG for kW thin disk lasers [J]. Optics Express, 2010, 18(20): 20712-20722. doi:  10.1364/OE.18.020712
[22] Feng T, Yang K, Zhao J, et al. 1.21 W passively mode-locked Tm: LuAG laser [J]. Optics Express, 2015, 23(9): 11819-11825. doi:  10.1364/OE.23.011819
[23] Yang K J, Luan C, Zhao S Z, et al. Diode-pumped mode-locked Tm: LuAG 2 µm laser based on GaSb-SESAM[C]//The European Conference on Lasers and Electro-Optics, Optical Society of America, 2017: CAP 27.
[24] Yan D Y, Liu P, Xu X D, et al. Eye-safe Nd: LuAG ceramic lasers [J]. Optical Materials Express, 2017, 7(4): 1374-1380. doi:  10.1364/OME.7.001374
[25] Zhou Z Y, Huang X X, Guan X F, et al. Continuous-wave and passively Q-switched Tm3+-doped LuAG ceramic lasers [J]. Optical Materials Express, 2017, 7(9): 3441-3447. doi:  10.1364/OME.7.003441
[26] Wang Y C, Lan R J, Mateos X, et al. Thulium doped LuAG ceramics for passively mode locked lasers [J]. Optics Express, 2017, 25(6): 7084-7091. doi:  10.1364/OE.25.007084
[27] Hu Xing, Cheng Dejiang, Guo Zhiyan, et al. Highly efficient RTP electro-optic Q-switched Nd:YVO4 laser by end-pumping at 914 nm [J]. Infrared and Laser Engineering, 2019, 48(1): 0105001. (in Chinese) doi:  10.3788/IRLA201948.0105001
[28] Paolo M B. Design criteria for mode size optimization in diode-pumped solid-state lasers [J]. IEEE Journal of Quantum Electronics, 1991, 27(10): 2319-2326. doi:  10.1109/3.97276
[29] Feng Y, Song F, Zhao L J, et al. Upconversion in Nd: YVO4 crystal under LD pump and its influence [J]. Acta Physica Sinica, 2001, 50(2): 335-360.
[30] Li Z Y, Zhang B T, Yang J F, et al. Diode-pumped simultaneously Q-switched and mode-locked Nd: GdVO4/LBO red Laser [J]. Laser Physics, 2010, 20(4): 761-765. doi:  10.1134/S1054660X10070170