[1] 王形锋, 闫兴涛, 陈国庆, 等. 柔性硫系玻璃红外光纤传像束的制备与性能测试[J]. 光学精密工程, 2017, 25(12): 3137-3144. doi:  10.3788/OPE.20172512.3137

Wang Xingfeng, Yan Xingtao, Chen Guoqing, et al. Fabrication and optical performances measurements of flexible chalcogenide imaging fiber bundles [J]. Optics and Precision Engineering, 2017, 25(12): 3137-3144. (in Chinese) doi:  10.3788/OPE.20172512.3137
[2] 常青, 檀恒宇, 孟天明. 不同核心尺寸及壳层厚度CdTe/CdS量子点非线性光学及超快动力学特性[J]. 红外与激光工程, 2021, 50(2): 20200342. doi:  10.3788/IRLA20200342

Chang Qing, Tan Hengyu, Meng Tianming. Nonlinear optics and ultrafast dynamics characteristics of CdTe/CdS quantum dots with different core sizes and shell thickness [J]. Infrared and Laser Engineering, 2021, 50(2): 20200342. (in Chinese) doi:  10.3788/IRLA20200342
[3] 侯尚林, 雷景丽, 吴七灵, 等. 高非线性光子晶体光纤中飞秒脉冲压缩(特邀)[J]. 红外与激光工程, 2019, 48(1): 103004-0103004(6). doi:  10.3788/IRLA201948.0103004

Hou Shanglin, Lei Jingli, Wu Qiling, et al. Enhanced femtosecond optical pulses compression in highly nonlinear photonic crystal fibers (invited) [J]. Infrared and Laser Engineering, 2019, 48(1): 0103004. (in Chinese) doi:  10.3788/IRLA201948.0103004
[4] Yi C, Song Y. Recent advance in optical nonlinearity measurement technique with phase object [J]. Infrared and Laser Engineering, 2012, 41(6): 1610-1617. (in Chinese)
[5] Wu X, Liu D, Yang J, et al. Optical nonlinear and optical limiting measurements of a new metal indium phthalocyanine [J]. Infrared and Laser Engineering, 2014, 43(1): 108-112. (in Chinese)
[6] Wang Y, Li Y, Song Y. Advances in 4f phase coherent imaging technique for measuring the optical nonlinear index [J]. Infrared and Laser Engineering, 2008, 37(4): 667-691. (in Chinese)
[7] Pradhan P, Khan P, Aswin J R, et al. Quantification of nonlinear absorption in ternary As-Sb-Se chalcogenide glasses [J]. Journal of Applied Physics, 2019, 125: 015105. doi:  10.1063/1.5063864
[8] Viswanathan A, Thomas S. Tunable linear and nonlinear optical properties of GeSeSb chalcogenide glass with solute concentration and with silver doping [J]. Journal of Alloys and Compounds, 2019, 798: 424-430. doi:  10.1016/j.jallcom.2019.05.261
[9] 王浩冰, 陶金, 吕金光, 等. 局域表面等离激元共振增强硅蓝光波段吸收特性研究[J]. 中国光学, 2020, 13(6): 1362-1384. doi:  10.37188/CO.2020-0056

Wang Haobing, Tao Jin, Lv Jinguang, et al. Absorption enhancement of silicon via localized surface plasmons resonance in blue band [J]. Chinese Optics, 2020, 13(6): 1362-1384. (in Chinese) doi:  10.37188/CO.2020-0056
[10] Sun T, Chen F, Lin C, et al. Local field effect influenced third-order optical nonlinearity of whole visible transparent chalcogenide glass ceramics [J]. Ceramics International, 2019, 45(8): 10840-10844. doi:  10.1016/j.ceramint.2019.02.160
[11] Haes A J, Lei C, Klein W L, et al. Detection of a biomarker for alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor [J]. Journal of the American Chemical Society, 2005, 127(7): 2264-2271. doi:  10.1021/ja044087q
[12] Haes A J, Haynes C L, McFarland A D, et al. Plasmonic materials for surface-enhanced sensing and spectroscopy [J]. MRS Bulletin, 2005, 30: 368-375.
[13] Willets K A, Duyne R P V. Localized surface plasmon resonance spectroscopy and sensing [J]. Annual Review of Physical Chemistry, 2007, 58: 268-297.
[14] 计吉焘, 翟雨生, 吴志鹏, 等. 基于周期性光栅结构的表面等离激元探测[J]. 光学精密工程, 2020, 28(3): 526-534. doi:  10.3788/OPE.20202803.0526

Ji Jitao, Zhai Yusheng, Wu Zhipeng, et al. Detection of surface plasmons based on periodic grating structure [J]. Optics and Precision Engineering, 2020, 28(3): 526-534. (in Chinese) doi:  10.3788/OPE.20202803.0526
[15] 韩晶, 高扬, 焦威严, 等. 基于石墨烯纳米带的中红外等离激元调控[J]. 中国光学, 2020, 13(3): 627-636.

Han Jing, Gao Yang, Jiao Weiyan, et al. Mid-infrared plasmon regulation based on graphene nanoribbons [J]. Chinese Optics, 2020, 13(3): 627-636. (in Chinese)
[16] Miao R, Zhang Y, Tang Y, et al. Photoluminescence enhancement and ultrafast relaxation dynamics in a lowdimensional heterostructure: effect of plasmon-exciton coupling [J]. Optics Letters, 2018, 43(24): 6093-6096. doi:  https://doi.org/10.1364/OL.43.006093
[17] Wen X, Xu W, Zhao W, et al. Plasmonic hot carriers-controlled second harmonic generation in WSe2 Bilayers [J]. Nano Letters, 2018, 18(3): 1686-1692. doi:  10.1021/acs.nanolett.7b04707
[18] Hooper D C, Kuppe C, Wang D, et al. Second harmonic spectroscopy of surface lattice resonances [J]. Nano Letters, 2019, 19(1): 165-172. doi:  10.1021/acs.nanolett.8b03574
[19] Xin H, Namgung B, Lee L P. Nanoplasmonic optical antennas for life sciences and medicine [J]. Nature Reviews Materials, 2018, 3: 228-243. doi:  10.1038/s41578-018-0033-8
[20] Kong X, Fu Y, Zhang W, et al. Analysis of random antireflective structures fabricated by silver dewetting to enhance transmission [J]. Journal of Nanophotonics, 2017, 11(3): 036019.
[21] Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearities using a single beam [J]. IEEE Journal of Quantum Electronics, 1990, 26(4): 760-769. doi:  10.1109/3.53394
[22] Wang X, Yao L, Li S, et al. Extraordinarily large third-order optical nonlinearity in Au nanorods under nanowatt laser excitation [J]. Journal of Physical Chemistry C, 2020, 124(12): 6838-6844. doi:  10.1021/acs.jpcc.0c00534
[23] Miao R, Shu Z, Hu Y, et al. Ultrafast nonlinear absorption enhancement of monolayer MoS2 with plasmonic Au nanoantennas [J]. Optics Letters, 2019, 44(13): 3198-3201. doi:  10.1364/OL.44.003198
[24] Alam M Z, Schulz S A, Upham J, et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material [J]. Nature Photonics, 2018, 12(2): 79-83. doi:  10.1038/s41566-017-0089-9
[25] He Guangsheng. Nonlinear Optics and Photonics [M]. Shanghai: Shanghai Scientific & Technial Publishers, 2019: 94. (in Chinese)
[26] Huang Kun. Solid State Physics [M]. Beijing: Peking University Press, 2014: 200. (in Chinese)