[1] Chen Hongfu, Luo Man, Shen Niming, et al. Research progress of two-dimensional layered materials-based heterojunction photodetectors(Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211018. (in Chinese) doi:  10.3788/IRLA20211018
[2] Zhang Jinyue, Lv Junpeng, Ni Zhenhua. Highly sensitive infrared detector based on a two-dimensional heterojunction [J]. Chinese Optics, 2021, 14(1): 87-99. (in Chinese) doi:  10.37188/CO.2020-0139
[3] Yang Qi, Shen Jun, Wei Xingzhan, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors [J]. Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese)
[4] Wang J, Han J, Chen X, et al. Design strategies for two‐dimensional material photodetectors to enhance device performance [J]. InfoMat, 2019, 1(1): 33-53. doi:  10.1002/inf2.12004
[5] Xu Hangyu, Wang Peng, Chen Xiaoshuang, et al. Research progress of two-dimensional semiconductor infrared photodetector(Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211017. (in Chinese) doi:  10.3788/IRLA20211017
[6] Wang J, Fang H, Wang X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared [J]. Small, 2017, 13(35): 1700894. doi:  10.1002/smll.201700894
[7] Ren Sheng, Liu Liwei, Li Jinhua, et al. Advances in the local field enhancement at nanoscale [J]. Chinese Optics, 2018, 11(01): 31-46. (in Chinese) doi:  10.3788/co.20181101.0031
[8] Han J, Wang J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions [J]. Chinese Physics B, 2019, 28(1): 17103. doi:  10.1088/1674-1056/28/1/017103
[9] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain [J]. Nature Nanotechnology, 2012, 7(6): 363-368. doi:  10.1038/nnano.2012.60
[10] Lee Y, Kwon J, Hwang E, et al. High-performance perovskite-graphene hybrid photodetector [J]. Advanced Materials, 2015, 27(1): 41-46. doi:  10.1002/adma.201402271
[11] Yu M, Chen Y, Chen Y G, et al. Synergy between fermi level of graphene and morphology of polymer film allows broadband or wavelength‐sensitive photodetection [J]. Advanced Materials Interfaces, 2021, 8(19): 2100770. doi:  10.1002/admi.202100770
[12] Yu W, Li S, Zhang Y, et al. Near-infrared photodetectors based on MoTe2 /graphene heterostructure with high responsivity and flexibility [J]. Small, 2017, 13(24): 1700268. doi:  10.1002/smll.201700268
[13] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene [J]. Nature Communications, 2011, 2(1): 579. doi:  10.1038/ncomms1589
[14] Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors [J]. ACS Nano, 2017, 11(10): 9854-9862. doi:  10.1021/acsnano.7b03569
[15] Chen X, Liu X, Wu B, et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer [J]. Nano Letters, 2017, 17(10): 6391-6396. doi:  10.1021/acs.nanolett.7b03263
[16] Zhou G, Sun R, Xiao Y, et al. A high‐performance flexible broadband photodetector based on graphene–PTAA–perovskite Heterojunctions [J]. Advanced Electronic Materials, 2021, 7(3): 2000522. doi:  10.1002/aelm.202000522
[17] Han J, Wang J, Yang M, et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse [J]. Advanced Materials, 2018, 30(49): 1804020. doi:  10.1002/adma.201804020
[18] He M, Han J, Han X, et al. Organic thin film thickness-dependent photocurrents polarity in graphene heterojunction phototransistor [J]. Carbon, 2021, 178: 506-514. doi:  10.1016/j.carbon.2021.03.024
[19] Han J, Han X, Zhang C, et al. Deciphering the photocurrent polarity of Bi2 O2 Se heterojunction phototransistors to enhance detection performance [J]. Journal of Materials Chemistry C, 2021, 9: 7910-7918. doi:  10.1039/D1TC02038B
[20] Han J, Zhang C, Peng S, et al. Type-III organic/two-dimensional multi-layered phototransistors with promoted operation speed at the communication band [J]. Journal of Materials Chemistry C, 2021, 9(39): 13963-13971. doi:  10.1039/D1TC03657B
[21] He Z, Han J, Du X, et al. Photomemory and pulse monitoring featured solution‐processed near‐infrared graphene/organic phototransistor with detectivity of 2.4×1013 Jones [J]. Advanced Functional Materials, 2021, 31(37): 2103988. doi:  10.1002/adfm.202103988
[22] Hou Y, Li Y, Zhang Z, et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing [J]. ACS Nano, 2021, 15(1): 1497-1508. doi:  10.1021/acsnano.0c08921
[23] Han J, He M, Yang M, et al. Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents [J]. Light: Science & Applications, 2020, 9(1): 167. doi:  https://doi.org/10.1038/s41377-020-00406-4