[1] Lai P, Nie L, Wang L. Special issue “Photoacoustic imaging: microscopy, tomography, and their recent applications in biomedicine” in visual computation for industry, biomedicine, and art [J]. Visual Computing for Industry, Biomedicine, and Art, 2021, 4(1): 16. doi:  https://doi.org/10.1186/s42492-021-00082-0
[2] Konig K. Multiphoton microscopy in life sciences [J]. J Microsc, 2000, 200(2): 83-104.
[3] Tehrani K F, Latchoumane C V, Southern W M, et al. Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing [J]. Biomed Opt Express, 2019, 10(7): 3591-3604. doi:  10.1364/BOE.10.003591
[4] Helmchen F, Denk W. Deep tissue two-photon microscopy [J]. Nat Methods, 2005, 2(12): 932-940. doi:  10.1038/nmeth818
[5] Prevedel R, Verhoef A J, Pernia-Andrade A J, et al. Fast volumetric calcium imaging across multiple cortical layers using sculpted light [J]. Nat Methods, 2016, 13(12): 1021-1028. doi:  10.1038/nmeth.4040
[6] Chamberland S, Yang H H, Pan M M, et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators [J]. eLife, 2017, 6: e25690. doi:  10.7554/eLife.25690
[7] Wang Xiao, Tu Shijie, Liu Xin, et al. Advance and prospect for three-dimensional super-resolution microscopy [J]. Laser & Optoelectronics Progress, 2021, 58(22): 2200001. (in Chinese)
[8] Hu Chunguang, Zha Ridong, Ling Qiuyu, et al. Super-resolution microscopy applications and development in living cell [J]. Infrared and Laser Engineering, 2017, 46(11): 1103002. (in Chinese) doi:  10.3788/IRLA201746.1103002
[9] Chen Danni, Li Yahui, Liu Wei, et al. Super-resolution infrared microscopy based on VSFG and donut-beam illumination [J]. Infrared and Laser Engineering, 2018, 47(8): 0804003. (in Chinese) doi:  10.3788/IRLA201847.0804003
[10] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-1645. doi:  10.1126/science.1127344
[11] Deschout H, Lukes T, Sharipov A, et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions [J]. Nature Communications, 2016, 7(1): 13693. doi:  10.1038/ncomms13693
[12] Vaziri A, Tang J, Shroff H, et al. Multilayer three-dimensional super resolution imaging of thick biological samples [J]. Proceedings of the National Academy of Sciences, 2008, 105(51): 20221-20226. doi:  10.1073/pnas.0810636105
[13] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-796. doi:  10.1038/nmeth929
[14] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning [J]. Optica, 2018, 5(4): 458-464. doi:  10.1364/OPTICA.5.000458
[15] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782. doi:  10.1364/OL.19.000780
[16] Yu W, Ji Z, Dong D, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy [J]. Laser & Photonics Reviews, 2016, 10(1): 147-152.
[17] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(2): 82-87. doi:  10.1046/j.1365-2818.2000.00710.x
[18] Rowlett Veronica W, Margolin W. 3D-SIM super-resolution of FtsZ and its membrane tethers in escherichia coli cells [J]. Biophysical Journal, 2014, 107(8): L17-L20. doi:  10.1016/j.bpj.2014.08.024
[19] Neil M A, Juškaitis R, Booth M J, et al. Adaptive aberration correction in a two‐photon microscope [J]. Journal of microscopy, 2000, 200(2): 105-108. doi:  10.1046/j.1365-2818.2000.00770.x
[20] Park J H, Kong L, Zhou Y, et al. Large-field-of-view imaging by multi-pupil adaptive optics [J]. Nat Methods, 2017, 14(6): 581-583. doi:  10.1038/nmeth.4290
[21] Yu T, Qi Y, Gong H, et al. Optical clearing for multiscale biological tissues [J]. J Biophotonics, 2018, 11(2): e201700187.
[22] Zheng Y, Chen J, Shi X, et al. Two-photon focal modulation microscopy for high-resolution imaging in deep tissue [J]. J Biophotonics, 2019, 12(1): e201800247. doi:  10.1002/jbio.201800247
[23] Si K, Gong W, Chen N, et al. Two-photon focal modulation microscopy in turbid media [J]. Applied Physics Letters, 2011, 99(23): 233702.
[24] Kobat D, Horton N, Xu C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex [J]. Journal of Biomedical Optics, 2011, 16(10): 106014. doi:  10.1117/1.3646209
[25] Wang Shaowei, Lei Ming. Near infrared-Ⅱ excited multiphoton fluorescence imaging [J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617002. (in Chinese)
[26] Nguyen Q T, Callamaras N, Hsieh C, et al. Construction of a two-photon microscope for video-rate Ca2+ imaging [J]. Cell Calcium, 2001, 30(6): 383-393. doi:  10.1054/ceca.2001.0246
[27] Theriault G, De Koninck Y, McCarthy N. Extended depth of field microscopy for rapid volumetric two-photon imaging [J]. Opt Express, 2013, 21(8): 10095-10104. doi:  10.1364/OE.21.010095
[28] Lu R, Sun W, Liang Y, et al. Video-rate volumetric functional imaging of the brain at synaptic resolution [J]. Nat Neurosci, 2017, 20(4): 620-628. doi:  10.1038/nn.4516
[29] van den Broek B, Ashcroft B, Oosterkamp T H, et al. Parallel nanometric 3D tracking of intracellular gold nanorods using multifocal two-photon microscopy [J]. Nano Letters, 2013, 13(3): 980-986. doi:  10.1021/nl3040509
[30] Bumstead J R, Park J J, Rosen I A, et al. Designing a large field-of-view two-photon microscope using optical invariant analysis [J]. Neurophotonics, 2018, 5(2): 025001.
[31] Yao J, Gao Y, Yin Y, et al. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics [J]. Opt Lett, 2022, 47(4): 989-992. doi:  10.1364/OL.450973
[32] Ji N, Freeman J, Smith S L. Technologies for imaging neural activity in large volumes [J]. Nature Neuroscience, 2016, 19(9): 1154-1164. doi:  10.1038/nn.4358
[33] Tsai P S, Mateo C, Field J J, et al. Ultra-large field-of-view two-photon microscopy [J]. Opt Express, 2015, 23(11): 13833-13847. doi:  10.1364/OE.23.013833
[34] Rumyantsev O I, Lecoq J A, Hernandez O, et al. Fundamental bounds on the fidelity of sensory cortical coding [J]. Nature, 2020, 580(7801): 100-105. doi:  10.1038/s41586-020-2130-2
[35] Negrean A, Mansvelder H D. Optimal lens design and use in laser-scanning microscopy [J]. Biomed Opt Express, 2014, 5(5): 1588-1609. doi:  10.1364/BOE.5.001588
[36] Yu C-H, Stirman J N, Yu Y, et al. Diesel2 p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry [J]. Nature Communications, 2021, 12(1): 6639. doi:  10.1038/s41467-021-26736-4
[37] Clough M, Chen I A, Park S W, et al. Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds [J]. Nature Communications, 2021, 12(1): 6638. doi:  10.1038/s41467-021-26737-3
[38] Fan J, Suo J, Wu J, et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution [J]. Nature Photonics, 2019, 13(11): 809-816. doi:  10.1038/s41566-019-0474-7
[39] Demas J, Manley J, Tejera F, et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy [J]. Nature Methods, 2021, 18(9): 1103-1111. doi:  10.1038/s41592-021-01239-8
[40] Sofroniew N J, Flickinger D, King J, et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging [J]. Elife, 2016, 5: e14472.
[41] Stirman J N, Smith I T, Kudenov M W, et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain [J]. Nat Biotechnol, 2016, 34(8): 857-862. doi:  10.1038/nbt.3594
[42] Yang M, Zhou Z, Zhang J, et al. MATRIEX imaging: multiarea two-photon real-time in vivo explorer [J]. Light: Science & Applications, 2019, 8(1): 109.
[43] Lecoq J, Savall J, Vučinić D, et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging [J]. Nature Neuroscience, 2014, 17(12): 1825-1829. doi:  10.1038/nn.3867
[44] Yao Jing, Wu Ting, Ye Shiwei, et al. Off-axis parabolic mirror afocal scanning system extends the imaging area of two-photon microscopy [J]. Acta Laser Biology Sinica, 2020, 29(3): 217-224. (in Chinese) doi:  10.3969/j.issn.1007-7146.2020.03.004
[45] 陈帅, 任林, 周镇乔, 等. 在体跨尺度双光子显微成像技术[J]. 中国光学 (中英文), 2022, 15: 1-16.

Chen Shuai, Ren Lin, et al. In-vivo across-scales two-photon microscopy[J]. Chinese Optics. doi:  10.37188/CO.2022-0086
[46] Gao Y, Liu L, Yin Y, et al. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues [J]. Optics Express, 2020, 28(23): 34935-34947. doi:  10.1364/OE.408621
[47] Zhao Y, Yu T, Zhang C, et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution [J]. Light: Science & Applications, 2018, 7(2): 17153.
[48] Cheng S, Li H, Luo Y, et al. Artificial intelligence-assisted light control and computational imaging through scattering media [J]. Journal of Innovative Optical Health Sciences, 2019, 12(4): 1930006. doi:  10.1142/S1793545819300064
[49] Li H, Woo C M, Zhong T, et al. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm [J]. Photonics Research, 2021, 9(2): 202-212. doi:  10.1364/PRJ.412884
[50] Woo C M, Zhao Q, Zhong T, et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping [J]. APL Photonics, 2022, 7(4): 046109. doi:  10.1063/5.0085943
[51] Yu Z, Li H, Zhong T, et al. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields [J]. The Innovation, 2022, 3(5): 100292.